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Abstract

We adopt the Dynamical Influence model from computer science and transform it to study
the interaction between business and financial cycles. For this purpose, we merge it with Markov-
Switching Dynamic Factor Model (MS-DFM) which is frequently used in economic cycle analysis.
The model suggested in this paper, the Dynamical Influence Markov-Switching Dynamic Factor
Model (DI-MS-DFM), allows to reveal the pattern of interaction between business and financial
cycles in addition to their individual characteristics. More specifically, with the help of this model
we are able to identify and describe quantitatively the existing regimes of interaction in a given
economy, and we allow them to switch over time. We are also able to determine the direction of
causality between the two cycles for each of the regimes. The model estimated on the US data
demonstrates reasonable results, identifying the periods of higher interaction between the cycles in
the beginning of 1980s and during the Great Recession, while in-between the cycles evolve almost
independently. The output of the model can be useful for policymakers since it provides a timely
estimate of the current interaction regime, which allows to adjust the timing and the composition
of the policy mix.
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1 Introduction

Throughout the history, the financial sector has been given an increasing role with respect to the
business cycle: from neutral intermediary in the theory of Modigliani-Miller to the early-warning in-
dicator revealing the expectations of the economic agents about the business cycle in the framework
of the efficient market hypothesis, then further to financial accelerator exacerbating the shocks in the
real economy in models with financial frictions, and finally, to the independent source of shocks, on
a par with technology and preference shocks in the New Keynesian DSGE models. Given the fast
development and the increasing importance of the financial sector, the understanding of the interac-
tion between the financial sector and the business cycle has become crucial for coordination of fiscal,
monetary and macroprudential policies. For this purpose, the quantitative estimates of the role of the
financial sector are essential.

The study of the financial sector and financial crises in particular gave rise to the notion of the
financial cycle. For the moment, there is no single definition of the financial cycle. Instead, in most
applied papers researchers refer to the fluctuations of credit, equity and house prices. In spite of the
fact that these represent different parts of the financial sector, they possess similar cyclical features,
and are therefore considered as the features of the financial cycle. Hubrich et al. (2013), Borio (2014)
find that the financial cycles are longer than the real business cycles and last about 12-15 years in
US, France and Italy. Drehmann et al. (2012), Ciccarelli et al. (2016), Canova and Ciccarelli (2009),
Canova and Ciccarelli (2012) find that the amplitude and duration of the financial cycle evolve. Borio
(2007) states that they actually depend on financial regime (liberalized market, controlled market),
monetary policy (high and variable inflation causes financial instability) and the state of the business
cycle (recession or expansion). In the same time, most of the studies agree that the business cycle, in
turn, depends on the financial cycle, with the real shocks being more significant during the episodes of
financial instability (see, for example, Bernanke and Gertler (1999), Kiyotaki and Moore (1997), Borio
(2014), Hubrich et al. (2013), Claessens et al. (2012)).

The particularly interesting feature of interdependence - the causality direction between the cycles
- has been studied in many papers. In the same time, there is no consensus on whether the financial
cycle leads the real cycle (Borio (2014)) or lags behind it (Runstler and Vlekke (2015)). This, however,
is consistent with the fact that the financial cycles evolve over time and are longer than business cycles.

Given the changing character of the cycles, it is natural to expect that the interaction between the
two is also evolving. Indeed, a brief look on the dynamics of the business and financial cycle in the
US (approximated by the index of industrial production and the index of house prices) shows that
the two cycles have different degree of synchronization in different periods of time (Figure 1). Thus,
the cycles are much more correlated in 1970s-beginning of 1980s and after the Global Financial Crisis
(with correlation about 0.60), and much less in-between (the correlation is zero).
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Figure 1: US industrial production index and US index of house prices
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Note: US index of industrial production (red line, right axis, source: Federal Reserve Bank of St. Louis), US index of
house prices (blue line, left axis, source: FTSE NAREIT US Real Estate Composite Index). Both series are detrended

and seasonally-adjusted.

Taking into consideration all above, an econometric model that is used to study the joint dynamics
of business and financial cycles should allow for the dynamical feedback between them. This idea was
implemented in several different approaches. Among the popular parametric models are the time-
varying VAR (in Hubrich et al. (2013)), Markov-Switching VAR model with time-varying transition
probabilities (as, for example, in Anas et al. (2007)), versions of multivariate structural time series
models (STSMs) (see Runstler and Vlekke (2015)), and time-varying Panel Bayesian VAR used by
Ciccarelli et al. (2016) for the analysis of the macro-financial linkages between countries.

In this paper we attempt to reconcile previous findings on the evolving character of the interac-
tion between business and financial cycles. For this purpose we suggest an alternative model, the
Dynamical Influence Markov-Switching Dynamic Factor Model (DI-MS-DFM). We assume that each
of the cycles can be in several states (expansion and recession in case of the business cycle, boom and
disruption in case of the financial cycle), and that there are several regimes of interaction, which differ
in degree of interdependence and leading/lagging behavior of the two cycles. This type of interaction
is realized with the help of a specific hierarchical structure, where an exogenous Markov chain governs
the size of the impact one cycle has on the other, which is the critical feature of this framework.
Due to the specific parametrization of the interaction, the model can be transformed into a classical
Markov-Switching model and so allows to obtain very rich statistical inference. Besides average dura-
tion, qualitative characteristics, and filtered and smoothed probabilities of each state for each of the
cycles, we get the same inference for the existing influence regimes. Also, we are able to detect the
channels of transmission of states, identify the direction of causality between cycles and evaluate the
relative impact of one cycle on the other, which is the main contribution of the paper. These estimates
allow us, first, to obtain the dating of recessions for each cycle separately, second, to determine the
leading-lagging relationship between business cycle and financial cycle during different periods of his-
tory, third, to identify and characterize the existing influence regimes as well as to make probabilistic
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inference on the current interaction regime and finally, provide forecasts of future states of each chain
given the current influence regime. All these estimates obtained in real time are particularly important
for the policymakers since they can be used in the design and adjustment of the policy mix. Moreover,
if we consider the notion of systemic risk in a broader sense, i.e. as a risk of a joint recession (both in
the financial and the business cycle simultaneously), the smoothed probability of the influence regime
corresponding to high interaction (as influence regime 2 in our empirical exercise below) can serve as
an early-warning indicator of systemic risk.

The paper is organized as follows. In Section 2 we introduce the model, describe the underlying
interaction mechanism and define Granger causality. We discuss the Maximum Likelihood estimation
and derive the indicators of in-sample inference in Section 3. The h-step ahead forecasts are presented
in Section 4. Section 5 demonstrates the quality of in-sample and out-of-sample performance of the
model. Section 6 describes the data used in the empirical exercise, whereas its results are discussed in
Section 7. Section 8 concludes.

2 The model

We adopt the Dynamical Influence model from computer science by Pan et al. (2012) and transform
it to study the interaction between business and financial cycles. For this purpose, we merge it
with Markov-Switching Dynamic Factor Model (MS-DFM) which is frequently used in economic cycle
analysis. The resulting model, the Dynamical Influence Markov-Switching Dynamic Factor Model
(DI-MS-DFM), is presented below.

At date t, t = 1, ..., T , economic agents observe (or infer) the business cycle RFt and the financial
cycle FFt which have the following dynamics

RFt = µ(S1
t ) + ϕ(L)RFt + σ(S1

t )εt, (1)

FFt = β(S2
t ) + ψ(L)FFt + θ(S2

t )ξt, (2)

where S1
t and S2

t are unobservable discrete processes which are associated with a finite number of
states and which govern the dynamics of the business cycle and the financial cycle, correspondingly,
ϕ(L) = ϕ1L + ... + ϕp1L

p1 and ψ(L) = ψ1L + ... + ψp2L
p2 are lag polynomials of finite order p1 and

p2 correspondingly, {εt} and {ξt} are independent standard Gaussian white noises. The functions
µ(·),σ(·),β(·), θ(·) are known functions of the specified arguments with unknown parameters.

We assume that the interaction between the cycles happens at the level of unobservable processes
S1
t and S2

t , but not observations, which means that (1)-(2) is a restricted VAR.1

The current values of S1
t and S2

t are each dependent on the past of both processes and a variable
rt governing the interaction between S1

t and S2
t , which is the crucial feature of the model:

P (S1
t |S1

t−1, S
2
t−1, rt) = A(S1

t−1, S
2
t−1, rt), (3)

1When the interaction on the level of observation is also allowed for, the identification of each channel can be an
issue.
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P (S2
t |S1

t−1, S
2
t−1, rt) = B(S1

t−1, S
2
t−1, rt), (4)

P (rt|rt−1) = Q, (5)

where rt is a Markov chain of first order2 with a finite number of regimes and the transition probabil-
ity matrix Q, A(·), B(·) are known functions with unknown parameters. We assume that the initial
r0, S

1
0 , S

2
0 , RF0, FF0 are not random.

For the sake of simplicity, we suppose here that the Markov processes rt, S1
t and S2

t are of order 1
with two states each (S1

t = 1 in case of expansion and S1
t = 2 in case of recession; S2

t = 1 in case of
financial boom and S2

t = 2 in case of financial disruption; the interpretation of the states of rt = {1, 2}
is determined by the degree of mutual influence between the two chains in each regime estimated
within the model3). Nevertheless, the analysis can be easily extended to incorporate chains of a higher
(and different) order and with more states. Similarly, it is also feasible to allow the past of RFt, FFt
or some observable covariate cause S1

t and S2
t .

Unlike classic Markov-switching models used in business cycle analysis, strictly speaking, the pro-
cesses S1

t and S2
t are not Markov chains since the current state of each of them depends on the past of

the other chain, too. Moreover, the process (S1
t , S

2
t ) is not Markov either as it depends on all its lags.

Nevertheless, for the ease of exposition, we address to S1
t and S2

t as “chains”.

To understand the dynamics of the model, we present the conditional distributions of RFt, FFt,
S1
t , S

2
t , rt using a generic notation xt = (xt, xt−1, ..., x0):

L(rt|RFt−1, FFt−1, S
1
t−1, S

2
t−1, rt−1) = L(rt|rt−1), (6)

L(S1
t |RFt−1, FFt−1, S

1
t−1, S

2
t−1, rt) = L(S1

t |S1
t−1, S

2
t−1, rt), (7)

L(S2
t |RFt−1, FFt−1, S

1
t , S

2
t−1, rt) = L(S2

t |S1
t−1, S

2
t−1, rt), (8)

L(RFt|RFt−1, FFt−1, S
1
t , S

2
t , rt) = N(µ(S1

t ) + ϕ(L)RFt, σ2(S1
t )), (9)

L(FFt|FFt−1, RFt, S
1
t , S

2
t , rt) = N(β(S2

t ) + ψ(L)FFt, θ2(S2
t )). (10)

The fundamental assumptions of the model are:

1. rt is autonomous, S1
t and S2

t do not cause rt in the Granger sense since S1
t−1, S

2
t−1 do not appear

in its conditional distribution.

2. RFt and FFt do not Granger cause S1
t , S2

t and rt.

3. S1
t and S2

t are conditionally independent given RFt−1, FFt−1, S
1
t−1, S

2
t−1, rt.

4. The process (S1
t , S

2
t , rt) is an autonomous Markov chain.

5. RFt and FFt are conditionally independent given rt, S1
t and S2

t .
2We assume that.
3For simplicity we assume that the number of states is equal, although this assumption is not restrictive.
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To summarize, the dynamics of the model can be represented in the following way (with ωt =
(rt, S1

t , S
2
t , RFt, FFt)):

rt|ωt−1 = rt|rt−1, (11)

S1
t |rt, ωt−1 = S1

t |rt, S1
t−1, S

2
t−1, (12)

S2
t |rt, S1

t , ωt−1 = S2
t |rt, S1

t−1, S
2
t−1, (13)

RFt|rt, S1
t , S

2
t , ωt−1 = RFt|S1

t , (14)

FFt|RFt, rt, S1
t , S

2
t , ωt−1 = FFt|S2

t . (15)

2.1 The interaction mechanism

The exogenous influence regime process rt is an ergodic first-order Markov Chain with 2 states, i.e.

P (rt = j|rt−1 = i, rt−2 = k, ...) = P (rt = j|rt−1 = i) = qij , j, i, k = {1, 2},

So rt switches states according to the transition probabilities matrix Q =
[

q11 1− q11

1− q22 q22

]
At period t the state of the business cycle S1

t depends on its own past S1
t−1 and also on the previous

state of the financial cycle S2
t−1. Similar logic applies to the financial cycle. The relative importance

of each chain is determined by a matrix Rrt , where rt = {1, 2}, which assigns weights to S1
t−1 and

S2
t−1, thus determining their self-impact and the influence of the other chain given the current influence

regime rt. Therefore, the probability that the business cycle is in state S1
t , given the states S1

t−1, S2
t−1

and rt, is a weighted average of probabilities to switch from S1
t−1 = a to S1

t = b and from S2
t−1 = c to

S1
t = b, where a, b, c,= {1, 2}, with weights determined by rt:

P (Sit = a|Sit−1 = b, Skt−1 = c, rt) = Rrt
i,i × P

i
ba +Rrt

k,i × C
k,i
ca , (16)

with i, k = {1, 2}, i 6= k, a, b, c = {1, 2}, and where Xi,j denotes the element of the i-th row and j-th
column of the matrix X. Here P i,i = 1, 2, is a 2 × 2 matrix of parameters capturing the self-state
transition, so that the element P 1

1,1 shows the probability that the first chain stays in the regime 1
“expansion”. Similarly, the matrix Ck,i, i, k = {1, 2}, i 6= k, is a 2×2 matrix of parameters that capture
cross-chain transition, so that, for example, the element C1,2

1,1 shows the probability that expansion in
the first chain induces expansion in the second chain. Importantly, self-state transitions and cross-
chain transitions do not depend on rt. The value Rrt

k,i shows the relative importance (the weight)
of the past of chain k on the present of the chain i given the current influence regime rt = {1, 2}.
Therefore, the larger are the diagonal elements of this matrix, the higher is the self-impact, and more
independent are the chains. The most important feature of this framework arises from the fact that
the weights vary over time with rt, thus rendering the interaction between the two chains dynamical.
We illustrate schematically the Dynamical Influence model in Figure 1.
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Figure 2: A graphical representation of the Dynamical Influence Model

Note: This is a modified version of Figure 2 from the paper by Pan et al. (2012)

This type of interaction is new in the economic literature. The existing methods based on the
modeling of the joint process (S1

t , S
2
t ) allow either for a fixed relation between the chains (in case of

static transition probability matrix) or exogenously driven relation (in case of transition probability
matrix depending on some covariates). On the contrary, in this model the interaction is designed to
be intrinsically dynamical, whether dependent on the covariates or not.

As we will show in the next section, after introduction of a new state variable the model boils down
to the classic Hamilton (1989) Markov-switching model. Therefore, once the estimates of the coeffi-
cients of (1) and (2), P 1, P 2, C1, C2, Q, R1, R2 are obtained, the standard filtered and smoothed prob-
abilities of each state of each chain can be calculated, including the smoothed probability P (rt = j|IT ),
j = 1...J of being in a particular influence regime j, where Iτ = (RFτ , FFτ ) is the information avail-
able at time τ . On top of that, it would be possible to calculate the joint filtered and smoothed
probabilities, which is useful for the purpose of analysis of joint crises in real and financial sectors.

2.2 Granger causality

As we said above, in this framework the two cycles RFt and FFt interact on the level of chains.
Importantly, the estimated matrices of coefficients R1, and R2 can give us an idea about the causality
relation between the two chains S1

t and S2
t .

Consider a process S̃t = (S1
t , S

2
t , rt), which is a Markov process with 8 states. We can decompose

the transition probabilities as follows:

P (S1
t , S

2
t , rt|S1

t−1, S
2
t−1, rt−1) = P (S1

t |S2
t , rt, S

1
t−1, S

2
t−1, rt−1)P (S2

t |rt, S1
t−1, S

2
t−1, rt−1)P (rt|S1

t−1, S
2
t−1, rt−1).
(17)

Using the assumptions (2) and (3) and equation (6), this expression can be simplified:
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P (S1
t , S

2
t , rt|S1

t−1, S
2
t−1, rt−1) = P (S1

t |rt, S1
t−1, S

2
t−1)P (S2

t |rt, S1
t−1, S

2
t−1)P (rt|rt−1). (18)

Now, like Billio and Di Sanzo (2015), we can define Granger non-causality between S1
t and S2

t :

1. S2
t−1 does not strongly cause S1

t one-step ahead given S1
t−1 and rt if

P (S1
t |S1

t−1, S
2
t−1, rt) = P (S1

t |S1
t−1, rt) ∀t. (19)

2. S1
t−1 does not strongly cause S2

t one-step ahead given S2
t−1 and rt if

P (S2
t |S2

t−1, S
1
t−1, rt) = P (S2

t |S2
t−1, rt) ∀t. (20)

We can also define the independence of two chains as follows:

3. S1
t and S2

t are independent given rt if

P (S1
t , S

2
t , rt|S1

t−1, S
2
t−1, rt−1) = P (S1

t |rt, S1
t−1)P (S2

t |rt, S2
t−1)P (rt|rt−1).

Following the approach of Billio and Di Sanzo (2015), for a given parametrization (16), the condi-
tions of the strong one-step ahead non-causality and independence can be derived as restrictions
on the parameter space.

The restriction H1 6⇒2 of the strong non-causality of S1
t towards S2

t given rt implies that the parameter
related to S1

t−1 is equal to zero. So, if

P (S2
t = a|S1

t−1 = b, S2
t−1 = c, rt) = Rrt

2,2 × P 2
ca +Rrt

1,2 × C12
ba , (21)

then

H1 6⇒2 : Rrt
1,2 = 0 (22)

Under H1 6⇒2 S
1
t−1 does not cause one-step ahead S2

t given S2
t−1 and rt. Since the terms related to

S1
t−1 are excluded from (21), therefore P (S2

t |S2
t−1, S

1
t−1, rt) = P (S2

t |S2
t−1, rt).

On the other hand, S2
t does not strongly cause one-step ahead S1

t given S1
t−1 and rt if :

P (S1
t = a|S1

t−1 = b, S2
t−1 = c, rt) = Rrt

1,1 × P 1
ba +Rrt

2,1 × C21
ca , (23)

H2 6⇒1 : Rrt
2,1 = 0 (24)
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The term related to S2
t−1 is excluded from (23), so P (S1

t |S1
t−1, S

2
t−1, rt) = P (S1

t |S1
t−1, rt).

Finally, the restriction of the independence of S1
t and S2

t given rt implies that both restrictions
(22) and (24) are verified simultaneously:

H2⊥1 : Rrt
2,1 = Rrt

1,2 = 0 (25)

Therefore, the value and significance of the off-diagonal coefficients of the matrices R1 and R2 allow
to make inference on the causality between the two chains within each regime j. Moreover, since the
elements in R1 and R2 are not necessarily 0 and 1, we can quantify the relative importance of each of
the affecting chains.

Note that the values of Cijab, i, j = {1, 2} give the idea of the global character of Granger causality
between the two cycles, defining the channels of interaction irrespective of the current influence regime.
At the same time, the conditions on Rrt

i,j refer to local changes in Granger causality, and can modify
the channel if it exists (the relevant coefficient of Cijab is non-zero).

3 Maximum Likelihood Estimation

On the basis of observable data, we need to infer the distributions of the underlying latent variables and
system parameters for the DI-MS-DFM. If the influence regime were constant, a standard approach
to be applied in order to estimate (1)-(16) would be to construct an auxiliary state variable (S1

t , S
2
t )

with 22 states:

P (S1
t = a, S2

t = b|S1
t−1 = c, S2

t−1 = d) = (R1,1 × P 1
ca +R2,1 × C2,1

da )(R2,2 × P 2
db +R1,2 × C1,2

cb ) (26)

However, when different influence regimes come into play, the coefficients of matrices R1 and R2 are
dependent on rt, and the transition probability matrix of (S1

t , S
2
t ) becomes Markov-switching itself:

P (S1
t = a, S2

t = b|S1
t−1 = c, S2

t−1 = d, rt) = (Rrt
1,1 × P 1

ca +Rrt
2,1 × C

2,1
da )(Rrt

2,2 × P 2
db +Rrt

1,2 × C
1,2
cb ),

(27)

so the standard estimation procedures can not be applied. This problem is easily overcome by using
the joint state variable S̃t = (S1

t , S
2
t , rt) with 23 = 8 states instead of (S1

t , S
2
t ). In this case, the

transition probability matrix Π is constant and is computed as follows:

Π = P (S̃t|S̃t−1) = P (S1
t |S1

t−1, S
2
t−1, rt = j)× P (S2

t |S1
t−1, S

2
t−1, rt = j)× P (rt = j|rt−1 = k) (28)

= P (S1
t |S1

t−1, S
2
t−1, rt = j)× P (S2

t |S1
t−1, S

2
t−1, rt = j)×Qk,j .

Note that, due to the hierarchical structure that we impose on the chains (S1
t , S

2
t , rt), the matrix Π has

a more parsimonious representation than a transition matrix of a Markov chain with 8 states would
usually have. Indeed, matrix Π contains only 14 parameters instead of 56, which certainly facilitates
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the numerical optimization of the likelihood. For notational use, we arrange the eight states of S̃t in
the following order: (S1

t , S
2
t , rt) = {(0, 0, 0), (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)}.

The classical Hamilton (1989) filter can then be applied. The filter has the filtered probability
P (S̃t−1 = j|It−1) as an input, where It = (RFt, FFt), and produces the filtered probability P (S̃t = j|It)
as an output, giving the likelihood f(yt|It−1) as a by-product. Once the starting filtered probability
P (S̃0 = j|I0) is initiated (we suppose that the probability of starting in any of eight states of S̃0 is
equal, P (S̃0 = j|I0) = 1/8, ∀j = 1, ..., 8), the filtered probability for steps t = 1...T are calculated by
iterating the following:

P (S̃t = j, S̃t−1 = i|It−1, γ) = P (S̃t = j|S̃t−1 = i, γ)P (S̃t−1 = i|It−1, γ), (29)

f(yt, S̃t = j, S̃t−1 = i|It−1, γ) = f(yt|S̃t = j, S̃t−1 = i, It−1, γ)P (S̃t = j, S̃t−1 = i|It−1, γ) (30)

f(yt|It−1, γ) =
2∑
j=1

2∑
i=1

f(yt, S̃t = j, S̃t−1 = i|It−1, γ). (31)

P (S̃t = j, S̃ = i|It, γ) = f(yt, S̃t = j, S̃t−1 = i|It−1, γ)
f(yt|It−1, θ)

(32)

= f(yt|S̃t = j, S̃t−1 = i, It−1, θ)× Pr(S̃t = j, S̃t−1 = i|It−1, θ)
f(yt|It−1, γ) ,

f(yt|S̃t = j, S̃t−1 = i, It−1, γ) = (2π)−1(σ2
S1

t
θ2
S2

t
)−1/2exp{−1

2
(R̃F t)2

σ2
S1

t

− 1
2

(F̃F t)2

θ2
S2

t

}, (33)

P (S̃t = j|It) =
2∑
i=1

P (S̃t = j, S̃t = i|It, γ), (34)

where

yt = (RFt, FFt),

γ = (P,B,C,K,Q,R1, R2, µ1, µ2, β1, β2, σ
2
1 , σ

2
2 , ω

2
1 , ω

2
2 , ϕ1...ϕp1 , ψ1...ψp2),

µS1
t

= µ2(S1
t − 1)− µ1(S1

t − 2),

σ2
S1

t
= σ2

2(S1
t − 1)− σ2

1(S1
t − 2),

βS2
t

= β2(S2
t − 1)− β1(S2

t − 2),

θS2
t

= θ2(S2
t − 1)− θ1(S2

t − 2),

R̃F t = RFt − µS1
t
− ϕ(L)RFt

F̃F t = FFt − βS2
t
− ψ(L)FFt.
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As a by-product of the Hamilton filter above, we obtain the log-likelihood function for the whole
sample for any given value of γ:

L (y, γ) = ln(f(yT , yT−1, ..., y0|IT , γ) =
T∑
t=1

ln(f(yt|It−1, γ)), (35)

where f(yt|It−1, γ) can be computed using formulas (29) to (34).

Once the filtered probability P (S̃t = j|It) is obtained for all t = 1...T , it is possible to compute the
smoothed probability P (S̃t = j|IT ) (we refer the reader to Hamilton (1989) for details). The filtered
and smoothed probabilities for each chain can be obtained by integrating out the other chains in S̃t,
i.e.:

P (Sit = k|It) = Σ2
m=1Σ2

l=1P (Sit , S−it = m, rt = l|It), (36)

P (Sit = k|IT ) = Σ2
m=1Σ2

l=1P (Sit , S−it = m, rt = l|IT ), (37)

P (rt = j|It) = Σ2
k=1Σ2

l=1P (Sit = k, S−it = m|It), (38)

P (rt = j|IT ) = Σ2
k=1Σ2

l=1P (Sit = k, S−it = m|IT ). (39)

Since the maximum likelihood is obtained with numerical algorithms, this estimation method can
be applied only when the number of parameters is not too big. When more interacting chains with
more states are involved, or when more influence regimes are allowed for, the optimization algorithms
may have difficulties to converge. In this case, the Forward-Backward algorithm and variational EM
suggested by Pan et al. (2012) can be used. Pan et al. (2012) have successfully applied this approach
to model the interaction between 50 states with 6 latent states each and 3 regimes of influence in order
to evaluate flu epidemics.

4 Forecasting

The in-sample analysis tools, such as filtered and smoothed probabilities discussed above, give a poste-
riori insight into the dating of both financial and business cycles and the types and timing of different
interaction regimes. The out-of-sample analysis is a valuable complement, providing a probabilistic
draft of future periods.

H-step ahead forecast of ergodic probability of the future state. Since the chain S̃t is the
Markov chain of order one, it is straightforward that

11



P (S̃t+h|S̃t) = Πh. (40)

Then, the h-step ahead forecast for each individual chain can be computed by integrating the other
two chains entering S̃t out. For example, the h-step ahead forecast for S1

t+h is:

P (S1
t+h = a|S̃t) = Σ2

b=1Σ2
c=1P (S1

t+h = a, St+h = b, rt+h = c|S̃t) = Πhv, (41)

where vector v selects the columns of Πh to be summed. For example, for P (S1
t+h = 1|S̃t) the vector

v is v = (1 0 1 0 1 0 1 0)′.

H-step ahead forecast of the future state. It is also possible to compute an h-step ahead forecast
of the state variable S̃t

P (S̃t+h|It) = Σ8
i=1P (S̃t+h|S̃t = i)P (S̃t = i|It) = P (S̃t|It)′Πh, (42)

where P (S̃t|It) is the vector of filtered probabilities of being in state S̃t = i, i = {1, ..., 8}.
As in the previous case, the h-step ahead forecast for each chain separately can be calculated by
integrating the other chains out. For example, for S1

t+h we obtain:

P (S1
t+h = a|It) = Σ2

b=1Σ2
c=1P (S1

t+h, S
2
t+h = b, rt+h = c|It) = P (S̃t|It)′Πhv, (43)

where, as before, the vector v selects the columns to sum over. For example, for P (S1
t+h = 2|S̃t) the

vector v is v = (0 1 0 1 0 1 0 1)′.

H-step ahead forecast of factors. Given equations (1) - (5), the h-step ahead forecasts of the
factors are obtained recursively as for regular AR(p) forecasts. For example, if

RFt+h = µ(S1
t+h) + ϕ(L)RFt+h−1 + σ(S1

t+h)εt+h, (44)

then
R̂F t+h = E(RFt+h|It) = E(µ(S1

t+h)|It) + ϕ(L)E(RFt+h|It), (45)

where the E(µ(S1
t+h)|It) is a known function of P (S1

t+h = a|It) defined in (43), and ϕ(L)E(RFt+h|It)
can be calculated using the forecasts obtained in the previous iterations, i.e. for h− 1, h− 2, etc. The
h-step ahead forecast of the financial factor F̂F t+h|t can be obtained in a similar way.

It is important to notice, however, that the DI-MS-DFM is designed for the identification of the
latent influence regime and performs poorly in the forecasts of factors. For this reason in the following
sections we focus solely on the in-sample and out-of-sample performance for the forecasts of states.

5 In-sample and out-of-sample performance

In this section we evaluate and compare the quality of in-sample and out-of-sample forecasts. We
also verify whether the dynamical influence feature, which is obviously a complication to a regular
two-factor Markov-switching Dynamic Factor model, actually helps to obtain better forecasts, both
in-sample and out-of-sample.
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In order to evaluate the performance of the model in terms of identification of the current state of
each of the chains, it is difficult to use empirical data since we have no reference dating for the financial
cycle and the influence regimes. For this reason, we run a Monte Carlo experiment on the simulated
data. We use the data generating process described in equations (1)-(5) with the parameters set to
their estimated values that we obtained using data described in the following section (see Table 7.1).4

The generated sample has T = 500 observations and is simulated 1000 times.

For the analysis of the accuracy of identification of states, we use the following indicators (in all
cases Xt = {S1

t , S
2
t , rt}, X∗t contains the corresponding true values of states, T is the total number of

observations, T1 is the out-of-sample period, indices is and oos correspond to in-sample and out-of-
sample cases, respectively):

1. QPS, the quadratic probability score. This indicator is conceptually similar to the mean squared
error and is calculated in the following way:

QPSis(X) = ΣTt=1(P (Xt = 2|IT , γ̂)−X∗t )2

T
, (46)

QPSoos(X) =
ΣT1−1
t=0 (P (XT+t+1 = 2|IT+t, γ̂)−X∗T+t+1)2

T1
, (47)

where P (Xt = 2|IT , γ̂) is the smoothed probability of state 2 given in equation (37), P (XT+t+1 =
2|IT+t, γ̂) is the one-step-ahead forecast of probability of state 2 given in equation (43).

2. FPS, the false positive score. This indicator gives the proportion of misidentified states and is
calculated as

FPSis(X) =
ΣTt=1(IP (XT +t+1=2|IT +t,γ̂)>0.5 −X∗t )2

T
, (48)

FPSoos(X) =
ΣT1−1
t=0 (IP (XT +t+1=2|IT +t,γ̂)>0.5 −X∗T+t+1)2

T1
, (49)

where IP̂>0.5 is the indicator function taking value one when P̂ is higher than 0.5, a conventional
threshold.

3. AUROC, the area under the Receiver Operating Characteristic curve,5 measures discrimination,
that is, the ability of the model to correctly classify the states of a chain. AUROC takes the

4The simulations show that model is very sensitive to the difference between the influence regimes. For this reason,
to generate our data, we use the estimates with a large difference between R̂1 and R̂2. However, the simulations show
that in case the regimes are close, this does not deteriorate the accuracy of the identification of the states of the financial
and business cycles (the model performs as good as a one-influence regime Markov-Switching Dynamic Factor model,
which is a special case of DI-MS-DFM with R1 = R2). However, this issue can be solved by using different initial values
or setting them as additional parameters of the model.

5ROC curve is a graphical plot which juxtaposes the true positive rates (the fraction of correctly identified recessions
(or financial disruptions)) and the false positive rates (the fraction of incorrectly identified recessions (or financial
disruptions)) as the threshold of the classifier (in this case, the cut-off smoothed probability for a state to be identified
as recession state) varies.
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value in [0; 1], AUROC = 1 meaning that the test is perfect. AUROCis is calculated using the
whole available sample, while AUROCoos is calculated using only the out-of-sample period.

4. J , Youden’s J statistic, which captures both sensitivity (the proportion of correctly identified
recessions) and specificity (the proportion of correctly identified expansions) of the model and
measures the probability of an informed decision versus pure chance. For a given threshold level
is calculated as

J = TP

TP + FN
+ TN

TN + FP
− 1,

where TP is the number of true positives (correctly identified recessions or financial disruptions),
FN is the number of false negatives (incorrectly identified expansions or financial booms), TN is
the number of true negatives (correctly identified expansions or financial booms) and FP is the
number of false positives (incorrectly identified recessions or financial disruptions). J takes values
in [−1; 1], where J = 1 means that there is no false positives or negatives, so the classification is
perfect, whereas J = 0 means that the proportions of correctly and incorrectly identified states
are the same, so the model is useless. For comparability, we set the threshold level h equal to
0.5 for all chains.

QPS can basically be considered as a mean squared error computed for the forecasts (nowcasts) of
states, and is informative only in comparison of several classificators. The other three measures can
be used independently, as FPS, AUROC and J- statistic show the relative quality of the model with
respect to pure chance.

5.1 In-sample performance

We present below the indicators of the in-sample performance of the DI-MS-DFM. These results are
opposed to the ones estimated with the help of a one-regime Markov-Switching Dynamic Factor model
(which implies R1 = R2) (see Table 5.1).

We observe that the DI-MS-DFM performs very well in the identification of the individual cycles
- the error rate measured with QPSis and FPSis is low, whereas the classification quality measured
with AUROCis and Jis is high. The influence regime is more difficult to identify (both QPSis and
FPSis are higher, whereas AUROCis and Jis are lower), however values of QPSis and FPSis do not
exceed the ones usually obtained in the empirical papers for the business cycle.

When comparing the performance of DI-MS-DFM to one-regime MS-DFM (see Table 5.1), one may
notice that, all four measures of quality pointing in the same direction, the introduction of dynamic
influence regime improves the accuracy of the identification of states of the individual cycles, even
though regimes themselves are identified with less precision.
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Table 5.1: In-sample performance: smoothed probabilities of the second state

DI-MS-DFM

QPSis FPSis AUROCis Jis

S1- business cycle 0.0182 0.0238 0.9754 0.9222
S2- financial cycle 0.0444 0.0567 0.9527 0.6819

r - interaction regimes 0.2034 0.2537 0.7343 0.3951

One influence regime MS-DFM

QPSis FPSis AUROCis Jis

S1- business cycle 0.0213 0.0264 0.9727 0.9199
S2- financial cycle 0.0471 0.0598 0.9472 0.6788

r - interaction regimes - - - -

Note: The table describes the ability of the models to identify state two of each of the chains: “reces-
sion” for S1

t , “high volatility” for S2
t and “Interdependent chains” for rt.

5.2 Out-of-sample performance

One-step ahead forecasts of states. For the out-of-sample analysis on simulated data, the sample
is split into in-sample period with T1 = 1, ..., T − 60 observations and out-of-sample period with
T2 = 60 observations, so that the number of observations in the in-sample period corresponds to the
one we used in the real sample (395 observations)). The out-of-sample forectasts P (S̃T1+t+1|IT1+t),
for t = 1, ..., T − T1 − 1 are then constructed using the equations (42).

The results of the simulation are given in Table 5.2. The reported values are the averages over 1000
simulations.

As expected, the out-of-sample behavior is inferior compared to in-sample performance. However,
the quality is still satisfactory, the values of QPSoos and FPSoos for the business cycle corresponding
to the ones usually obtained in the empirical exercises (see, for example, Matas Mir et al., 2008).
Similarly to the in-sample performance, the introduction of switches in the influence regime does not
deteriorate the quality of the out-of-sample identification of the individual cycles.

6 Data description

We perform our analysis for the business and the financial cycle of the United States. To describe the
business cycle, we adopt the Dynamic Factor Model approach by Stock and Watson (1989). We assume
that each of the indicators of the real sector of an economy (industrial production, consumption, stock,
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Table 5.2: Out-of-sample performance: one-step ahead forecast of the future state

DI-MS-DFM

QPSoos FPSoos AUROCoos Joos

S1- business cycle 0.0615 0.0712 0.8952 0.6574
S2- financial cycle 0.1309 0.1279 0.6683 0.2435

r - interaction regimes 0.2857 0.3639 0.6195 0.1628

One influence regime MS-DFM

QPSoos FPSoos AUROCoos Joos

S1- business cycle 0.0672 0.0789 0.8437 0.6376
S2- financial cycle 0.1322 0.1383 0.7118 0.1687

r - interaction regimes - - - -

consumer and business surveys, etc.) can be decomposed into two parts, the first one referring to the
comovement of series of the real sector (the real sector), and the idiosyncratic part:

xt = γRFt + zt, (50)

where xt is a K×1 vector of stationarized and deseasonalized economic indicators, RFt is a univariate
common factor of the real sector variables - the business cycle, zt is a K × 1 vector of idiosyncratic
components, which is uncorrelated with RFt at all leads and lags, γ is a K × 1 vector. Bai (2003),
Stock and Watson (2002) showed the consistency of PCA for large N and large T for the estimation of
factors, so the common factor RFt can be approximated with the first principal component of a rich
database of macroeconomic variables.

To construct the business cycle indicator we use the Stock-Watson database of indicators from
CITIBASE and available in the databank of the Federal Reserve Bank of Saint Louis.6 The first
principal component explains just 18% of the total variance, however it is highly correlated with the
GDP growth, contrary to the other components. In practice, the first component is usually enough to
describe the business cycle, the other inclusion of the other components giving only marginal improve-
ment (see Doz and Petronevich (2015), for example).

Unfortunately, there is no commonly used definition of the financial cycle (neither theoretical, nor
practical). There is no commonly accepted proxy of the financial cycle indicator. For this reason,

6see Stock and Watson (2005, 2006)
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we construct a financial cycle indicator using the same approach (50). We thus approximate the fi-
nancial cycle with the first principal component extracted from the database containing 31 indicators
of different segments of the financial sector most used in the empirical papers on financial cycles. In
particular, we extended the list of indicators used by Guidolin et al. (2013) with the information on
deposits, monetary aggregates, loans, reserve balances and other. The complete list is given in Table
A.1 in the Appendix.7

All data are seasonally adjusted, stationarized and standardized. The time-span covers the period
1976m06-2014m12.

7 Estimation results

7.1 Characteristics of cycles and identified interaction regimes

In this empirical exercise, we set ϕp1 = ψp2 = 0, ∀p1, p2.8 We also impose several technical con-
straints in order to increase the convergence to the correct local maximum. More specifically, we set
diag(Q) > 0.5e (where e is a vector of ones) to avoid the situations when the influence regimes are
not persistent. The initial values of β0, β1 and σ2

0 , σ2
1 are set to the mean and the variance for the

business cycle observations above and below 0 (the initial values of µ0, µ1 and θ2
0, θ2

1 are set similarly
for the financial factor). The initial values of the matrices R1 and R2 are set to their potential values,
for example, diag(R1) = [0.9, 0.9]′, diag(R2) = [0.9, 0]′.9

The estimation results are given in Table 7.1. According to the estimates, switches in the regime
of the business cycle happen mostly in mean, whereas the variance stays relatively stable. On the
contrary, the financial factor switches primarily in variance. We also find that expansions in both
cycles, as well as recessions of the business cycle, are very persistent (P̂ 1

11, P̂ 2
11, P̂ 1

22, are close to one).
Recessions in the financial cycle are less persistent (P̂ 2

22 is below 0.9). These estimates match the
findings in the previous literature.

Now consider the parameters characterizing the influence. The business cycle is capable of trans-
mitting both expansion and recession to the financial cycle (the coefficients Ĉ12

11 and Ĉ12
22 are above 0.9).

The transmitting ability is reciprocal, although the financial cycle less likely to transmit expansion to
the business cycle (Ĉ21

11 is only 0.74). A similar asymmetry of influence between the business cycle and
the financial cycle (measured as industrial production growth rate and excess returns, correspondingly)
was also detected by Billio and Di Sanzo (2015).

7Other datasets were also tested. The corresponding results are available by request.
8The number of lags has been chosen according to the information criteria. Inclusion of lags of the dependent variables

in equations (1) and (2) does not change the estimates significantly.
9Setting the initial values of these parameters to random leads to instability in the results. To solve this problem, we

try different plausible values: 1) diag(R1) = [0, 0]′, diag(R2) = [0.9, 0.9]′, 2) diag(R1) = [0, 0.9]′, diag(R2) = [0.9, 0.9]′,
3) diag(R1) = [0.9, 0]′, diag(R2) = [0.9, 0.9]′, 4) diag(R1) = [0.9, 0.9]′, diag(R2) = [0.9, 0.9]′, 5) diag(R1) = [0, 0]′,
diag(R2) = [0, 0]′, 6) diag(R1) = [0.5, 0]′, diag(R2) = [0.5, 0.5]′, 7) diag(R1) = [0, 0.5]′, diag(R2) = [0.5, 0.5]′. The
output obtained with different these sets of initial values are equivalent qualitatively and very similar quantitatively.
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Table 7.1: Estimation results

Business cycle Financial cycle
γ̂ σ̂γ̂ γ̂ σ̂γ̂

µ̂1 0.5718 (0.0374) β̂1 0.1584 (0.0343)
µ̂2 -0.8512 (0.0712) β̂2 -0.8587 (0.2806)
σ̂2

1 0.3103 (0.0276) θ̂2
1 0.2742 (0.0311)

σ̂2
2 0.8107 (0.0851) θ̂2

2 4.0480 (0.9117)
P̂ 1

11 0.9897 (0.0156) P̂ 2
11 0.9888 (0.0192)

P̂ 1
22 0.9809 (0.0121) P̂ 2

22 0.8799 (0.2985)
Ĉ12

11 0.9059 (0.1311) Ĉ21
11 0.7481 (0.0121)

Ĉ12
22 0.9899 (0.7864) Ĉ21

22 0.9889 (0.0029)

Influence regimes
“Independent chains” “Interdependent chains”

R̂1
1,1 0.9815 R̂2

1,1 0.8562
R̂1

2,2 0.9426 R̂2
2,2 0.1853

q̂11 0.9900 q̂22 0.9677

Note: The estimated specification is RFt = µs1
t

+ εt, εt ∼ N(0, σ2
S1

t

), FFt = βs2
t

+ ξt, ξt ∼ N(0, θ2
S2

t

).

The detected abilities of state transmission are clearly necessary for understanding of the relation
between the chains. In our framework these should be considered together with the parameters re-
sponsible for the influence regimes. The model identified two distinct and very persistent influence
regimes (q̂11 and q̂22 are above 0.96). LR tests confirm that the two identified influence regimes are
not redundant (the value of the likelihood ratio LR = 150.45, the hypothesis of one regime is rejected
at α = 0.05). The values R̂1

1,1, R̂
1
2,2, R̂2

1,1, R̂2
2,2 suggest that the first and the second regimes can be

interpreted as “Independent cycles” and “Interdependent cycles”, correspondingly.

We perform a Likelihood-ratio test in order to find out the direction of causality in each of the
regimes. More precisely, we test if the high values of R̂1

1,1, R̂
1
2,2 can be interpreted as the absence of

causality in the first regime, and if the high value of R̂2
1,1 and the low value of R̂2

2,2 actually implies
that in the second regime the business cycle leads the financial cycle. We test a joint hypothesis H0

versus the alternative H1, where

H0 :



R̂1
1,1 = 1

R̂1
2,2 = 1

R̂2
1,1 = 1

R̂2
2,2 = 0

, H1 :



R̂1
1,1 6= 1

R̂1
2,2 6= 1

R̂2
1,1 6= 1

R̂2
2,2 6= 0

. (51)

The value of the test statistics is LR = 81.91 and largely overcomes the critical value at 5% of
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confidence probability (χ2
0.95,4 = 9.49), so H0 is not rejected.

7.2 Identifying the periods of recession, financial disruption and high in-
terdependence between the cycles

The estimated smoothed probabilities of recession P (S1
t = 2|IT ), financial downturn P (S2

t = 2|IT ) and
second influence regime P (rt = 2|IT ) are presented in Figures 3-5. Shaded areas correspond to NBER
business cycle recessions and are given to verify the validity of the obtained estimates. On Figure
3 one can see that the model captures all business cycle recessions well. The smoothed probability
of recession spikes exactly with the beginning of the NBER recession, without either false signals or
missed recessions. Whereas the double-dip crisis of 1980 and 1981-1982 is identified very accurately,
the duration of the other three recessions observed in the time-span - the early 1990s recession, the
dot-com bubble and the Great Recession - appears to be overestimated by the model. This imprecision
might be due to the fact that the US business cycle is reported to have at least three states (recession,
expansion and slow growth), one of which we have omitted in this simple specification of the model.10

The adequacy of the estimated smoothed probabilities of financial disruptions is difficult to eval-
uate since there is no benchmark dating of financial cycles. To provide at least some reference, we
use the dates of the beginning of banking crises as identified by Laeven and Valencia (2008 and 2010)
and Reinhart and Rogoff (2008) to pinpoint the gravest events in the US banking sector (September
1988 and July 2007) which certainly correspond to financial crises, even though it is possible that they
do not cover all financial crises but only those in the banking sector. Comparing the graphs of the
smoothed probability with these reference dates on Figure 4, we can see that the model captures the
banking crisis of 2008 with much precision, but foreruns the crisis of 1988 by about 10 months. In
general, smoothed probability of financial disruption detects all the major events in the last 40 years:
the savings and loans crisis and bank crisis during the double-dip recession of 1980 and 1981-1982,
Black Monday of 1987, early 1990s recession, the Russian crisis of 1998, bursting of dot-com bubble in
2001, the global financial crisis of 2008.

The ongoing influence regime at each point of time is clearly visible from Figure 5. The “Inter-
dependent cycles” regime was active during the double-dip recession and the Great Recession. Both
cases (and not during the other two observed recessions during the period under consideration) were
marked with increased panic on the stock exchange, which can probably be an explanation of the
higher interaction between the financial and the business cycles during these periods. This idea is
consistent with the theory of sunspot equilibria: the exogeneous random Markov-Switching process rt
can be viewed as an extrinsic variable, influencing the economy through expectations but not affecting
the fundamentals. In other words, if the agents’ beliefs are such that the current shock (either finan-
cial or economic) is likely to be devastating, they act accordingly on the stock exchange, launching
a self-reinforcing mechanism of transition of the shock from the financial sector to the real and back
- the economy enters the “Interdependent cycles regime”. Otherwise, if the agents are sure that the
shock is temporary (as the Black Monday of 1987, for example), the interaction is just not activated

10Indeed, the GDP growth rate was recovering much slower during the last three recessions comparing to the preceding
ones.
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(“Independent cycles” influence regime is on), and the shock does not propagate.

The estimates of the periods of high interaction seem reasonable. However, one may argue that
the direction of causality between the two cycles (identified as business cycle leading the financial
cycle) might not be the same in 1980-1982 and 2008. If the double-dip recession in the financial cycle
might indeed have been provoked by the crisis in the real sector (due to the oil price shock), it seems
doubtful that the real sector was leading the financial sector during the Great Recession, when the
recession in the real economy was induced by the collapse in the financial sector. This misidentification
of causality in the second case might arise from the fact that in this empirical exercise we allow for
just two influence regimes. Given the relatively long period of low correlation between the two cycles
in the middle of the sample, the model identified the regime of independent cycles and attributed any
sort of other relation to the other regime. Therefore, once more influence regimes are allowed for, the
model might be able to distinguish different types of interdependence.

Figure 3: Smoothed probability of recession in the business cycle

Note: Grey shaded areas correspond to NBER recessions, dotted vertical lines mark the beginning of systemic banking crises
as identified by Laeven and Valencia (2008 and 2010) and Reinhart and Rogoff (2008).
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Figure 4: Smoothed probability of financial disruption

Note: Grey shaded areas correspond to NBER recessions, while dotted vertical lines mark the beginning of systemic banking
crises as identified by Laeven and Valencia (2008 and 2010) and Reinhart and Rogoff (2008).

Figure 5: Smoothed probability of the “Interdependent cycles” regime

Note: Grey shaded areas correspond to NBER recessions, dotted vertical lines mark the beginning of systemic banking crises
as identified by Laeven and Valencia (2008 and 2010) and Reinhart and Rogoff (2008).

21



7.3 Transition probabilities and smoothed probabilities of future states

Table (7.2) contains the estimated one-step ahead transition probabilites for the business cycle and
the financial cycle (P (Sit |Sit−1, S

k
t−1, rt−1), i, k = {1, 2}, i 6= k) calculated using equation (40). These

estimates are important since they provide a description of the individual characteristics of each of
the cycles. So save space, we report only the probability to switch to expansion (financial boom) P (Sit =
1|Sit−1, S

k
t−1, rt−1), the probability of recession (financial disruption) being (P (Sit = 2|Sit−1, S

k
t−1, rt−1) =

1 − P (Sit = 1|Sit−1, S
k
t−1, rt−1). Table (7.2) contains the forecasts for all possible combinations of the

past values of the chains S1
t−1, S

2
t−1, rt−1 known at t− 1.

Table 7.2: Estimated one-step ahead probability of expansion and financial boom (P (Sit =
1|Sit−1, S

k
t−1, rt−1))

Probability of expansion in the business cycle
P (S1

t = 1|S1
t−1, S2

t−1, rt−1)
“Independent chains” “Interdependent chains”

S1
t−1 = 1, S2

t−1 = 1 0.99 0.95
S1

t−1 = 1, S2
t−1 = 2 0.97 0.85

S1
t−1 = 2, S2

t−1 = 1 0.02 0.11
S1

t−1 = 2, S2
t−1 = 2 0.01 0.01

Probability of financial boom
P (S2

t = 1|S1
t−1, S2

t−1, rt−1)
“Independent chains” “Interdependent chains”

S2
t−1 = 1, S1

t−1 = 1 0.98 0.92
S2

t−1 = 1, S1
t−1 = 2 0.93 0.21

S2
t−1 = 2, S1

t−1 = 1 0.75 0.87
S2

t−1 = 2, S1
t−1 = 2 0.69 0.16

For the business cycle, the probability to switch to expansion depends on the previous state of
the business cycle to a large extent. Both expansion and recession states are very persistent (the
probability to stay in expansion for any past conditions is above 0.85; similarly, the probability to stay
in recession is above 0.89). However, when the "interdependent cycles regime" is active, the impact
of the financial cycle is not negligible: financial disruption decreases the probability that the business
cycle switches from recession to expansion (from 0.11 to 0.01) confirming the findings of Claessens et
al. (2012) who found that disruptions in financial sector tend to make recessions longer. In the same
manner, financial disruption reduces chances to stay in expansion in the business cycle (the probability
decreases from 0.95 to 0.85).

The probability of financial boom depends both on its past and on the past influence regime. In the
"Independent cycles" regime the boom state is very persistent contrary to the disruption state (with
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the probability to stay in the state above 0.93 and 0.25 (under any past conditions) correspondingly).
In the "Interdependent cycles" regime, the past state of the business cycle plays a decisive role. When
the business cycle is in expansion, the probability to stay in financial boom is high and is close to
the corresponding one in the "Independent cycles" regime. However, a recession in the business cycle
decreases this probability dramatically: from 0.92 to 0.21 (for the probability of staying in financial
boom), and from 0.87 down to 0.16 (for the probability to switch from financial disruption to boom).

The findings above indicate that the downturns in the financial cycles are temporary by their nature,
as the financial market in the developed economies is flexible enough to absorb the shocks relatively
quickly. For this reason, on Figure 4 the episodes of financial instability are presented just as spikes in
the smoothed probability during the "Independent cycles" regime. To the contrary, when the financial
cycle enters into interaction with the business cycle, the downturn state becomes much more persistent.

What are the projections of the model for the future? Figure 6 gathers the 36 months ahead
forecasts of the smoothed probability of recession (blue line), financial downturn (red line) and "Inter-
dependent cycle" regime (yellow area). The model thus predicts that by 2018 the period of low growth
rates in the real sector will be over, financial sector will be stable and the "Independent cycles" regime
will dominate.

What sort of implication can this have for policy-makers? Even though at this moment theoretical
models do not have an unequivocal answer to the question on linkages between financial and busi-
ness cycles, the impact of certain instruments of monetary, macro- and microprudential policy, and
so do not provide an optimal policy rule, the knowledge of the current state of both cycles as well
as the level of their interaction can be helpful for policy adjustments. For example, when the cycles
are independent, the spillover effects documented by Zdzienicka et al. (2015), such as the impact of
monetary policy on the stability of the financial sector, can be quite limited, which may allow to run
more aggressive policies to stimulate either of the cycles. Similarly, the trade-off between financial
stability and economic prosperity in the environment of the low interest rates discussed by Coimbra
and Rey (2015) and Heider et al. (2017) can be less pronounced. On the contrary, when the cycles
are interdependent, the regulator should be prepared to implement large interventions since the the
recessions appear to be longer and more severe (Claessens et al. (2012)), and the financial sector needs
increased support to stabilize.

Given the aggravated character of recessions during the periods of high interaction between the cy-
cles, the set of monetary, fiscal and macroprudential measures should be directed towards the reduction
of the procyclicality of the financial sector. Cerutti et al. (2015) find that macroprudential policy is an
effective instument for this purpose and works better during the bust phase of the financial cycle and
are more efficient in emergent economies rather than advanced ones. Blanchard et al. (2009) suggest
that the monetary policy should take into account the assets price movements, too, however, by now is
it not clear how to operationalize this. Another solution for mitigating credit cycles and dramatically
reducing the level of government and public debt, proposed by Fischer (1936) and recently rediscovered
by Kumhof and Benes (2012), is the radical idea of separation of monetary and credit functions of the
banking system, also known as Chicago plan.
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Whatever the relevant policy is, given the usual lag between the moment when a problem in an
economy is recognized and the moment when the undertaken policy starts giving the first effects,
timing is very important. In this concern, the probabilities of the influence regimes and states of
individual cycles are of a great use since they provide an operative measure of the current state of the
economy and future tendencies, and can be updated as soon as new information arrives. Moreover,
once the causality direction is identified for each of the influence regimes, the leading cycle can serve
as an early-warning indicator.

Figure 6: 36 months ahead forecast of smoothed probability
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Note: Blue line and red line correspond to the smoothed probability of recession in the business cycle and the downturn state
in the financial cycle, respectively. Yellow area marks the smoothed probability of being in the "Interdependent cycle" regime.
Grey shaded areas correspond to NBER recessions.

8 Conclusion

Previous findings in the literature on business and financial cycles has shown that the cycles evolve,
and so does their interaction. In this paper we suggest a flexible econometric framework, the Dy-
namical Influence Markov Switching Dynamic Factor model (DI-MS-DFM), which allows to capture
the changes in this interaction. Contrary to the existing models of the joint dynamics of business
and financial cycles, we allow the interaction to be intrinsically dynamical, which implies that there
is no need to search for an exogenous variable which could serve as as a proxy for the process gov-
erning the interaction. Based on the mix of the Dynamical influence model from computer science
and the classical Markov-Switching model, the DI-MS-DFM produces a wide range of statistical tools
which can be very useful to desing a relevant policy mix for mitigating the effects of downturns in
both cycles as well as for reduction of the procyclicality of the financial cycle. More precisely, besides
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the characteristics of the individual cycles, the model allows to characterize the existing influence
regimes in terms of leading-lagging relation between the two cycles as well as the degree of their in-
terdependence, and to provide a probabilistic indicator of being in a particular regime of interaction
at each point of time. Forecasts of the future states and future influence regimes can also be calculated.

We applied the model to the macroeconomic and financial series of the US for the period 1976m06
to 2014m12. The obtained estimates complement the findings in the previous literature. The model
clearly identifies two distinct influence regimes, “Independent cycles” and “Interdependent cycles”,
the second being active during the double-dip recession in July 1979-November 1981 and the Great
Recession in January 2007-January 2012. The periods of higher interaction are well detected, although
the results may be even more telling if one allows for three influence regimes.

As any other model, the DI-MS-DFM has several limitations. First, it requires the time span to be
long enough in order to make sure that all the regimes of all chains are observed at least once. This
implies that the more flexibility one introduces into the model (by increasing the number of chains,
individual states, influence regimes), the more data is needed, which can obviously be a problem,
especially for the analysis of developing countries. Secondly, the simulations show that the influence
regimes are well identified only when they are different enough, however, this does not deteriorate the
quality of the estimates the individual behavior of each cycle. Nevertheless, this issue can be solved
by a more accurate selection of initial values for the optimization process.

The model can be extended in several ways. The most straightforward direction is the generaliza-
tion of the model for a larger number of influence regimes and states of each of the cycles. Secondly,
it seems appealing to engage more chains into the dynamical interaction, for example, by letting the
credit and equity part of the financial market each follow their individual chain. Another interesting
application of this kind concerns the interaction of business and financial cycles of several countries
(for example, the core countries of the Euro area) which would allow to asses the contribution of each
country to the cross-country systemic risk, identify the clusters of interdependence, and construct
an indicator of systemic risk in the region. Third, we can let the cycles to interact not only on the
level of underlying latent finite-state processes, but also on the level of observations by allowing for
cross-correlation in the error terms of the DGPs of the cycles and/or by introducing a VAR structure
in equations (1) and (2), which might improve the forecasting ability of the model. In this case the
identification issues concerning the distinction between the observation-level and chain-level interac-
tion should be resolved, as well as the causality definition is to be reconsidered.

The Dynamic Influence Markov-Switching Dynamic Factor Model, to our knowledge, is the first
instrument for objective and reproducible empirical identification of the regimes of interaction between
the real and the financial sectors. Even in its basic form, it appears to produce meaningful inference
on individual features of cycles as well as the dynamics of their interaction. All this information can
be useful for policy-makers as it enables to adjust the fiscal, monetary and macroprudential policy
according to the current influence regime.
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A Appendix

Table A.1: List of financial variables used for describing the financial cycle in the US

Series Source

Series from Guidolin et al. (2013) database

Monthly SP500 portfolio returns FREDII
3mtb. monthly rate FREDII
10-Year Treasury Constant Maturity Rate FREDII
2-Year Treasury Constant Maturity Rate FREDII
Moody’s Seasoned Baa Corporate Bond Yield FREDII
Composite NAREIT NAREIT
Equity REITs NAREIT
Mortgage REITs NAREIT
Excess return on a value-weighted market FREDII
S&P 500 dividend yield — (12 month dividend per share)/price. FREDII
Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury Constant Maturity FREDII
10-Year Treasury Constant Maturity Minus 3-Month Treasury Constant Maturity FREDII
10-Year Treasury Constant Maturity Minus 2-Year Treasury Constant Maturity Rate FREDII
Unexpected inflation rate FREDII
Industrial production index FREDII
Real personal consumption expenditures FREDII

Other series

3-month Tbill rate of return minus CPI FREDII
SP500 PE ratio FREDII
Federal funds effective rate FREDII
Monetary Base; Total FREDII
Total Reserve Balances Maintained with Federal Reserve Banks FREDII
M1 Money Stock FREDII
M2 Money Stock FREDII
Federal Debt: Total Public Debt as Percent of Gross Domestic Product FREDII
Median Sales Price for New Houses Sold in the United States FREDII
Total Assets. All Commercial Banks FREDII
Commercial and Industrial Loans. All Commercial Banks FREDII
Loans and Leases in Bank Credit. All Commercial Banks FREDII
Total Savings Deposits at all Depository Institutions FREDII
Loans to deposits ratio FREDII
Consumer Credit Outstanding (Levels) FREDII
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