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On the Design of Optimal Health Insurance

Contracts under Ex Post Moral Hazard

Pierre Martinon∗, Pierre Picard†and Anasuya Raj‡

July 1st, 2016

Abstract

We analyze the design of optimal medical insurance under ex post moral haz-

ard, i.e., when illness severity cannot be observed by insurers and policyholders

decide on their health expenditures. We characterize the trade-off between ex

ante risk sharing and ex post incentive compatibility, in an optimal revelation

mechanism under hidden information and risk aversion. We establish that the

optimal contract provides partial insurance at the margin, with a deductible

when insurers’ rates are affected by a positive loading, and that it may also

include an upper limit on coverage. We show that the potential to audit the

health state leads to an upper limit on out-of-pocket expenses.

∗Ecole Polytechnique, Department of Applied Mathematics and INRIA, France.
†Ecole Polytechnique, Department of Economics, France.
‡Ecole Polytechnique, Department of Economics, France.
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1 Introduction

Ex post moral hazard in medical insurance occurs when insurers do not observe the

health states of individuals, and policyholders may exaggerate the severity of their

illness - Arrow (1963, 1968), Pauly (1968) and Zeckhauser (1970). Proportional coin-

surance under ex post moral hazard (i.e., when insurers pay the same fraction of the

health care cost whatever the individuals’ expenses) has been considered by many

authors, including Zeckhauser (1970), Feldstein (1973), Arrow (1976), Feldstein and

Friedman (1977), and Feldman and Dowd (1991). However, while proportional coinsur-

ance has the advantage of mathematical tractability, it is neither an optimal solution

to the ex post moral hazard problem, nor an adequate representation of the health

insurance policies that we have before us.

To approach this issue in more general terms, we may consider a setting where

the policyholder has private information about her illness severity and she chooses

her health care expenditures - or equivalently where a provider, acting as a "perfect

agent" of the policyholder, prescribes the care that is in the patient’s best interest.

The contract between insurer and insured specifies the insurance premium and the

indemnity schedule, i.e., the indemnity as a (possibly non-linear) function of med-

ical expenses. This is equivalent to a direct revelation mechanism that specifies care

expenses and insurance transfers as functions of a message sent by the policyholder

about the severity of her illness, and where she truthfully reveals her health state to

the insurer. Looking for an optimal non-linear insurance contract under ex post moral

hazard is thus equivalent to characterizing the optimal solution to an information rev-

elation problem.1 We will analyze this problem with the double concerns of robustness

1Winter (2013) surveys the literature on insurance under ex ante and ex post moral hazard. The

ex post moral hazard information problem was identified by Zeckhauser (1970) and addressed firstly

by Blomqvist (1997). The latter argues that the indemnity schedule is S -shaped, with marginal

coverage increasing for small expenses and decreasing for large expenses. Unfortunately, he overlooks
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of theoretical conclusions and, as far as possible, a conformity with economic reality.

Not surprisingly, under ex post moral hazard, the trade-off between incentives and

risk sharing leads to a partial coverage at the margin. However, Salanié (1990) and

Laffont and Rochet (1998) have shown that bunching (i.e., the incomplete separation

of agents according to their type) frequently arises in adverse selection principal-agent

models with risk averse agents. This may also be the case in the Mirlees’optimal

income tax model, as shown by Lollivier and Rochet (1983) and Weymark (1986).

In our insurance setting, the optimal contract actually does not always fully separate

individuals according to their health state. Under specific assumptions about the prob-

ability distribution of health states, that will correspond to a cap on health expenses

and insurance indemnities that is reached by a non-negligible fraction of policyhold-

ers.2 Thus, the optimal contract specifies a partial reimbursement at the margin, with

bunching "at the top". Furthermore, a deductible may be optimal only if insurers

charge a positive loading because of transaction costs.3 Hence, ex post and ex ante

moral hazard lead to quite different conclusions about the optimality of deductibles:

important technical aspects (including bunching and limit conditions), which considerably reduces the

relevance of his conclusions. All in all, as shown in this paper, in most cases, the optimal indemnity

schedule is in fact not S -shaped. Drèze and Schokkaert (2013) show that the Arrow’s theorem of the

deductible extends to the case of ex post moral hazard. However, they directly postulate that the

insurance premium is computed with a positive loading factor, presumably because of transaction

costs. They do not address the question of whether ex post and ex ante moral hazard differ in this

respect, independently of the existence of transaction costs.
2In the terminology of health insurance, such an upper limit on coverage corresponds to a fixed-

dollar indemnity plan on a per-period basis, i.e., medical insurance pays at most a predetermined

amount over the whole policy year, regardless of the total charges incurred.
3It is well known that optimal insurance contracts may include a deductible because of transaction

costs (Arrow, 1963), ex ante moral hazard (Holmström, 1979) or costly state verification (Townsend,

1979). Although ceilings on coverage are widespread, they have been justified by arguments that

are much more specific: either the insurer’s risk aversion for large risks and regulatory constraints

(Raviv, 1979), or bankruptcy rules (Huberman et al., 1983) or the auditor’s risk aversion in costly

state verification models (Picard, 2000).
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in the absence of transaction costs, a deductible may be optimal under ex ante moral

hazard (Holmström, 1979), but not under ex post moral hazard. We will show that

this characterization is robust to changes in the modelling, including the case where

income is affected by a background risk and the one where preferences are not sep-

arable between wealth and health. Finally, we will show how the "umbrella policy"

approach - in which insurance indemnity depends on total medical expenses, both of

them being measured on a per period basis - can be connected to the "fee-for-service"

approach, in which medical services are unbundled, and separately paid for by patients

and insurers.

Partial insurance at the margin and caps on insurance indemnities are frequent, but

they are far from being a universal characterization of health insurance, be it offered by

social security or by private insurers. In the real world, we also observe limits to out-

of-pocket expenses that are usually reached for large inpatient care expenses.4 This

discrepancy between theory and practice may be the consequence of an unrealistic

feature of the standard ex post moral hazard model: in practice, patients are not

always allowed to choose their health expenses freely. It is a fact that basic health

expenses are more or less decided unilaterally by patients, for instance whether they

should visit their general practioners or their dentists to cure benign pathologies, while

insurers have control over more serious expenses, in particular surgeries or other types

of hospital care.

Extending our analysis in that direction, we will immerse the ex post moral haz-

ard problem in a costly state verification setting (Townsend, 1979). There should be

no audit for low health expenses, because monitoring the expenses would be cost pro-

hibitive. When health expenses cross a certain threshold, an audit should be triggered,

and it is then optimal to provide full coverage at the margin, i.e., to include a limit on

out-of-pocket expenditures in the indemnity schedule.

4See, for instance, the description of the health insurance plans in the Affordable Care Act at

https://www.healthcare.gov/health-plan-information/.
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In brief, the objective and results of this paper are twofold. Firstly, we characterize

the optimal health insurance indemnity schedule under ex post moral hazard in a way

which is as robust as possible - a task that does not seem to have been performed

in a satisfactory way sofar -, and secondly, we extend this analysis to a costly state

verification setting. To do so, we proceed as follows. Section 2 introduces our main

notations and assumptions. Section 3 characterizes the optimal non-linear insurance

contract, when the policyholder’s preferences are separable between wealth and health.

Theoretical results are derived through optimal control technics, and they are also

solved through a computational approach. Section 4 appraises the robustness of our

results by considering alternative models, with correlated background risk, with non-

separable utility, and with insurance loading, respectively. Section 5 immerses the ex

post moral hazard problem in a costly state verification setting, where health expenses

may be audited. Section 6 concludes. The main proofs are in Appendix 1. Appendix

2 includes details on our computational approach and a complementary set of proofs.

2 The model

We consider an individual whose welfare depends both on monetary wealth R and

health level H, with a bi-variate von Neumann-Morgenstern utility function U(R,H)

that is concave and twice continuously differentiable. In the following section, as in

Blomqvist (1997), we will start by restricting attention to the case where U is additively

separable between R and H, and we will write U(R,H) = u(R) +H, with u′ > 0 and

u′′ < 0. Thus, the individual is income risk averse and illness affects her utility, but

it does not affect the marginal utility of income.5 The non-separability case will be

considered in Section 4. The monetary wealth R = w − T is the difference between

initial wealth w and net payments T made or received by the individual for her health

5Regarding the empirical analysis of utility functions that depend on health status, see particularly

Viscusi and Evans (1990), Evans and Viscusi (1991), and more recently Finkelstein et al. (2013).
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care, including insurance transfers.

Health may be negatively affected by illness, but it increases with the health ex-

penditures. This is written as:

H = h0 − γx[1− v(m)], γ > 0,

where h0 is the initial health endowment, x ≥ 0 is the severity of illness (or health

state) and m ≥ 0 denotes medical expenses. We assume that v(m) is concave and

twice continuously differentiable, with v(0) = 0, v′(0) = +∞, v(m) ∈ (0, 1), v′(m) >

0, v′′(m) < 0 if m ∈ (0,M), v′(M) = 0, v(m) = v(M) ≤ 1 if m ≥ M. > 0. Illness

severity x is randomly distributed over the interval [0, a], a > 0, with c.d.f. F (x) and

continuous density f(x) = F ′(x) > 0 for all x ∈ [0, a).6

3 Optimal non-linear insurance

3.1 Incentive compatibility

We assume that coverage is offered by risk neutral insurers operating in a competitive

market without transaction costs, and that each individual can be insured through only

one contract. An insurance contract is characterized by a schedule I(m) that defines

the indemnity as a function of health expenditures and by premium P .7 Function

I(.) : R+ → R+ is supposed to be continuous, nondecreasing, piecewise continuously

differentiable and such that I(0) = 0.8 We have T = m+P − I(m) and R = w− T =

6For notational simplicity, we assume that there is no probability weight at the no-sickness state

x = 0, but the model could easily be extended in that direction.
7This is an umbrella policy in which expenses and indemnity are evaluated on a per period basis.

The link with a fee-for-service approach (with unbundled compensation rules) will be considered in

subsection 3.4.
8In addition to being realistic, assuming that I(m) is nondecreasing is not a loss of generality if

policyholders can claim insurance payment for only a part of their medical expenses: in that case,
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w − P − m + I(m).9 A type x individual chooses her health care expenses m(x) in

order to maximize her utility, that is

m(x) ∈ arg max
m̃≥0

{u(w − P − m̃+ I(m̃)) + h0 − γx[1− v(m̃)]} ,

and we denote Î(x) ≡ I(m(x)) the insurance indemnity received by this individual.

I(0) = 0 implies m(0) = 0, and thus we have Î(0) = I(m(0)) = 0.

The allocation {m(x), Î(x)}|x∈[0,a] is sustained by a direct revelation mechanism

in which health expenditures and the indemnity are respectively m(x̃) and Î(x̃) when

the individual announces that her health state is x̃ ∈ [0, a], and where truthfully

announcing the health state is an optimal strategy. The characterization of the optimal

indemnity schedule I(.) will go through the analysis of the corresponding optimal

revelation mechanism {m(.), Î(.)}. Let

V (x, x̃) = u(w − P + Î(x̃)−m(x̃)) + h0 − γx[1− v(m(x̃))]

be the utility of a type x individual who announces x̃. Thus, incentive compatibility

requires

x ∈ arg max
x̃∈[0,a]

V (x, x̃) for all x ∈ [0, a]. (1)

The insurer’s break-even condition is written as

P ≥
∫ a

0

Î(x)f(x)dx. (2)

only the increasing part of their indemnity schedule would be relevant. Piecewise differentiability

means that I(m) has only a finite number of non-differentiability points, which includes the indemnity

schedule features that we may have in mind, in particular those with a deductible, a rate of coinsurance

or an upper limit on coverage. I(0) = 0 corresponds to the way insurance works in practice, but it

also acts as a normalization device. Indeed, replacing contract {I(m), P} by {I(m) + k, P + k} with

k > 0, would not change the net transfer I(m)− P from insurer to insured, hence an indeterminacy

of the optimal solution. This indeterminacy vanishes if we impose I(0) = 0.
9Our notations are presented by presuming that policyholders pay m (i.e., the total cost of medical

services) and they receive the insurance indemnity I(m). However, we may also assume that the

insurer and policyholders respectively pay I(m) and m − I(m) to medical service providers. Both

interpretations correspond to different institutional arrangements, and both are valid in our analysis.
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An optimal revelation mechanism {m(.), Î(.)} : [0, a]→ R2
+ maximizes the policy-

holder’s expected utility∫ a

0

{u(R(x)) + h0 − γx[1− v(m(x))]} f(x)dx, (3)

where R(x) ≡ w−P+ Î(x)−m(x), subject to (1) and (2). Lemma 1 is an intermediary

step that will allow us to write this optimization problem in a more tractable way.

Lemma 1 (i) For any incentive compatible mechanism, m(x) and Î(x) are non-

decreasing. (ii) There exists a continuous optimal direct revelation mechanism {m(.), Î(.)}.

(iii) Any continous direct revelation mechanism is incentive compatible if and only if

Î ′(x) =

[
1− γxv′(m(x))

u′(R(x))

]
m′(x), (4)

m′(x) ≥ 0, (5)

at any differentiability point.

The monotonicity of incentive compatible mechanisms is intuitive: more severe

illnesses induce higher medical expenses and higher insurance compensation. If a rev-

elation mechanism includes discontinuities in Î(x) and m(x), then it is possible to

reach the same expected utility with lower indemnities and expenses, and such a

mechanism would not be optimal. The interpretation of (4) and (5) is as follows. Sup-

pose a type x individual slightly exaggerates the severity of her illness by announcing

x̃ = x + dx instead of x̃ = x. Then, at the first-order, the induced utility varia-

tion is {u′(R(x))[Î ′(x)−m′(x)] + γxv′(m(x))m′(x)}dx, which cancels when (4) holds.

Monotonicity condition (5) is the local second-order incentive compatibility condition.

Symmetrically, it is easy to show that (4)-(5) implies incentive compatibility.

3.2 The optimal insurance contract

Let us denote h(x) ≡ m′(x). The optimal revelation mechanism maximizes the poli-

cyholder’s expected utility given by (3) with respect to Î(x),m(x), h(x), x ∈ [0, a] and
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P , subject to Î(0) = m(0) = 0, condition (2) and

Î ′(x) =

[
1− γxv′(m(x))

u′(R(x))

]
h(x), (6)

m′(x) = h(x), (7)

h(x) ≥ 0 for all x, (8)

Î(x) ≥ 0 for all x, (9)

This is an optimal control problem where Î(x) and m(x) are state variables and h(x)

is a control variable.10 Propositions 1, 2 and 3 and Corollaries 1 and 2 characterize

the optimal solution to this problem as well as the corresponding indemnity schedule

I(m).

Proposition 1 The optimal mechanism is such that 0 < Î(x) < m(x) for all x > 0.

Proposition 2 Assume f(x) is non-increasing and

d ln f(x)

dx
< x

d2 ln f(x)

dx2
for all x ∈ [0, a]. (10)

Then there is x ∈ (0, a] such that

0 < Î ′(x) < m′(x) if 0 < x < x,

Î(x) = Î(x),m(x) = m(x) if x < x ≤ a.

Corollary 1 x = a if x is uniformly distributed over [0, a].

Corollary 2 Assume f(a) = f ′(a) = 0, f ′′(a) > 0, and d ln f(x)/dx and d2 ln f(x)/dx2

remain finite when x→ a. Then, we have x < a.

10Note that Î(x) and m(x) are piecewise differentiable because I(m) is piecewise differentiable.

This allows us to use the Pontryagin’s principle in the proof of Proposition 1. In this proof, it is

shown that the optimal revelation mechanism is such that Î ′(x) ≥ 0. Since m′(x) ≥ 0, the optimal

mechanism will be generated by a non-decreasing indemnity schedule I(m), as we have assumed.
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Proposition 1 states that the policyholder receives partial but positive compen-

sation in all of the cases where she incurs care expenses. This is an intuitive result,

since there is no reason to penalize a policyholder who would announce that her health

health expenses are low (i.e., that x is close to 0). However, it sharply contrasts the ex

ante moral hazard setting, since we know from Holmström (1979) that, in that case, a

straight deductible may be optimal, and more generally not indemnifying small claims

may be part and parcel of an optimal insurance coverage.

The optimal contract trades off risk-sharing and incentives to not overspend for

medical services. Under condition (10), this trade-offmay tip in favor of the incentive

effect when x is large enough.11 If x is lower than x, thenm(x) and Î(x) monotonically

increase, with an increase in the out-of-pocket expenses m(x)− Î(x), when x goes from

0 to x. When x ≥ x, there are ceilings m(x) and Î(x), respectively, for expenses and

indemnity. Corollaries 1 and 2 illustrate the two possible cases x = a (no bunching)

and x < a (bunching), respectively. There is no bunching when the illness severity is

uniformly distributed in the [0, a] interval. If the density function of x decreases to zero

when x goes to a and is differentiable at x = a, then Corollary 2 provides a suffi cient

condition for bunching to be optimal. In the first case, the probability of the highest

severity levels remains large enough for capping expenditures and indemnities to be

suboptimal, while in the second case it is optimal. If we consider the differentiability

of density f(x) at the top as a natural assumption, then Corollary 2 provides support

for upper limits in optimal insurance indemnity schedules.

Proposition 3 Under the assumptions of Proposition 2, the optimal indemnity sched-
11When f(x) is non-increasing, a suffi cient condition for (10) to hold is written as d2 ln f(x)/dx2 ≥ 0,

i.e. ln f(x) is non-increasing and weakly convex. This is the case, for instance, if the distribution of

x is uniform or exponential.
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ule I(m) is such that

I ′(m) ∈ (0, 1) if m ∈ (0,m),

I ′(m)− = 0 if x = a, I ′(m)− > 0 if x < a,

I(m) = I(m) if m ≥ m,

where m = m(x). We have I ′(0) ≥ 0 and lim
m→0
− mv′′(m)/v′(m) < 1 is a suffi cient

condition for I ′(0) > 0.

The characterization of the indemnity schedule I(m) provided in Proposition 3 is

derived from I(m(x)) ≡ Î(x) , which gives

I ′(m) =
Î ′(x)

m′(x)
= 1− γxv′(m(x))

u′(R(x))
< 1,

if m = m(x) and 0 < x < x. If there is no bunching, then there is no distortion at

the top, which corresponds to the case u′(R)− γxv′(m) = 0, and thus I ′(m) = 0. We

have I ′(m)− > 0 in the case of bunching.

Hence, the indemnity schedule has a slope between 0 and 1 in its increasing part.

At the bottom, there is no deductible, contrary to case of ex ante moral hazard. At

the top, in the case of bunching, the indemnity schedule has an angular point at

m = m, and all the individuals with an illness severity larger than x are bunched

with the same amounts of health expenses m and insurance indemnity I(m).12 In the

absence of bunching, the population of policyholders is spread from m(0) = Î(0) = 0

to m(a) > Î(a) > 0 when x increases from 0 to a, with different choices for different

illness severity levels.

12In practice, the optimal policy could be approximated by a piecewise linear schedule with slope

between 0 and 1 until the upper limit m and with a capped indemnity when m > m. It would be

interesting to estimate the welfare loss associated with this piecewise linearization. The simulations

presented in Section 3.3 suggest that it may be low.
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3.3 Simulation

Simulations are performed by transforming the infinite dimensional optimal control

problem into a finite dimensional optimization problem, through a discretization of

x, applied to the state and control variables, as well as the dynamics equations.13

We assume that x is distributed over [0, 10], i.e., a = 10, either exponentially, i.e.,

f(x) = λe−λx + e−λa/a, with λ = 0.25,14 or uniformly, i.e., f(x) = 1/a. We also

assume v(m) =
√
m/[1+

√
m], with γ = 0.2 and utility is CARA: u(R) = −e−sR, with

s = 10. The numerical solver leads to optimal functions Î(x) and m(x) - and also to

h(x) and P - and thus to function I(m) through I(m(x)) = Î(x) for all x ∈ [0, a].

Figure 1 represents the optimal indemnity schedule I(m) and indifference curves in

the (m, I) space for x ∈ {0.3, 7, 9} when x is uniformly distributed. Parameters σ and

k will be introduced later: they correspond to a loading factor and to the intensity of a

background risk, respectively. Here, both are equal to 0, since there is no loading and

no background risk. The optimal type x indifference curve is tangent to the indemnity

schedule for expenses m(x). As stated in Corollary 1, there is no bunching: m(x)

goes from m(0) = 0 to m(10) ' 0.772 and Î(x) = I(m(x)) goes from I(0) = 0 to

I(0.772) ' 0.457, when x goes from 0 to 10. There is no deductible (i.e. I ′(0) > 0)

and the marginal coverage cancels at the top, that is I ′(0.772) = 0.

Figure 2 corresponds to the case of an exponential distribution, with indifference

curves also drawn for x ∈ {0.3, 7, 9}. Now there is bunching at the top, as expected

from Corollary 2. We have x ' 6.7 and m ' 0.872. I(m) has an angular point at

m = m. Figure 2 illustrates the case of types x = 7 and x = 9: in both cases, the

13Such direct approach methods are usually less precise than indirect methods based on Pontrya-

gin’s Maximum Principle, but they are more robust with respect to the initialization. We here use

the Bocop software (see http://itn-sadco.inria.fr/software/bocop-software). We refer the reader to

Appendix 2-A and, for instance, to Betts (2001) and Nocedal and Wright (1999) for more details on

direct transcription methods and non-linear programming algorithms.
14Note that f(a) and f ′(a) are close to 0 when a is large.
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optimal expenses are equal to m. As in Figure 1, we have I ′(0) > 0: the optimal

indemnity schedule does not include a deductible.

Figures 1 and 2

3.4 Fee-for-service payment

In most health insurance contracts, medical services (visits to doctors, drug purchases,

hospital stays...) are unbundled, and separately paid for by patients and insurers. So

far, we have defined the indemnity schedule as an "umbrella policy" that gives the

total insurance idemnity I as a function of the total medical expenses m, irrespective

of the selection of medical services that are at the origin of these expenses. Let us

sketch a more general model in order to connect the two approaches.

Assume that the health state is denoted by ω = (ω1, ω2) ∈ Ω1 × Ω2 = Ω, where ω1

is publicly observable and ω2 is private information of the policyholder. Ω1 and Ω2 are

multi-dimensional sets that include all possible diseases, characterized by the type and

severity of pathologies, with one of these states corresponding to good health. Assume

also that there exists a function g(.) : Ω −→ [0, a] such that x = g(ω) is the severity

of illness in state ω. As before, severity refers to the cost of medical services that are

required to reach a given utility gain through health improvement. The probability

distribution of x is induced by a probability measure PΩ(.) over Ω.

Let us index medical services by s = 1, ..., S, and let ps denote the market price for

a unit quantity of service s. The total medical expenses of a patient who benefits ns

times from ys units of type s service ism =
∑S

s=1 psnsys.
15 Let n = (n1, ..., nS) and y =

(y1, ..., yS). Type ω individuals choose (n, y) in a type-dependent set K(ω1) ⊂NS×RS+
15For instance, if s corresponds to primary health care provided by general practionners, then ns

is the number of visits to such doctors during the policy year. The policyholder purchases a more

or less important quantity of each type of medical services. For instance, he may visit a doctor who

spends more time with his patients or who has better skills or more experience, and this doctor would

charge a higher price per visit.
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that includes the medical services that can be helpful in state ω. We thus assume that

the set of useful medical services depends on the observable component ω1, while the

severity of the desease depends on ω1 and ω2 and is thus private information to the

policyholder. The policyholder’s utility is still written as u(R) + h0 − γx[1 − v(m)],

now with x = g(ω) and m =
∑S

s=1 psnsys. Hence, as before, we postulate that the

improvement in the state of health depends on the total sum of medical expenses.

Equivalently, a patient’s health state improvement depends on the consumption of an

aggregate good ("health care") that is effi ciently produced at the lowest cost by the

health care industry through the combination of medical services.

In a fee-for-service insurance policy, the indemnity schedule is written as T (ω1, n, y).16

It is an umbrella policy if T (ω1, n, y) = I
(
ω1,
∑S

s=1 psnsys

)
, with I(.) : Ω1 × R+ −→

R+.17 Under the T (.), P fee-for-service policy, the optimal choice of a type ω individ-

ual, denoted by (nT,P (ω), yT,P (ω)), maximizes18

u
(
w − P −

∑S

s=1
psnsys + T (ω1, n, y)

)
+ γg(ω)v

(∑S

s=1
psnsys

)
,

with respect to (n, y) ∈ K(ω1).

In this setting, a type-contingent allocation is written as {P, IΩ(ω), nΩ(ω), yΩ(ω)}|ω∈Ω

where IΩ(ω), nΩ(ω), and yΩ(ω) respectively define the insurance indemnity, and the

number and quantity of each medical service in state ω. The fee-for-service payment

policy T (.), P implements the type-contingent allocation {P, IΩ(ω), nΩ(ω), yΩ(ω)}|ω∈Ω

if they correspond to the same health expenses and indemnity payments in all states,

that is if
∑S

s=1 psn
T,P
s (ω)yT,Ps (ω) =

∑S
s=1 psnΩs(ω)yΩs(ω) and T (nT,P (ω), yT,P (ω)) =

16For instance, if the policy includes copayment cs for service s = 1, ..., S and a deductible D, then

T (n, y) = max{
∑S

s=1 ns(psys − cs)−D, 0}.
17Umbrella insurance usually refers to an insurance coverage in excess of specified other policies,

particularly automobile and homeowners liability policies. We use this terminology because the

principle of umbrella policies is to globally protect the policyholders’wealth against uncovered risks,

without reference to the specificity of these risks.
18For the sake of notational simplicity, we assume here that there is a unique optimal solution to

the policyholder’s maximization problem.
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IΩ(ω) for all ω ∈ Ω. In this paper, we focus attention on umbrella policies, and

Proposition 4 provides a justification to this restriction.

Proposition 4 Any type-contingent allocation {P, IΩ(ω), nΩ(ω), yΩ(ω)}|ω∈Ω that can

be implemented by a fee-for-service payment policy T (.), P , can also be implemented

by an umbrella policy I(.), P .

Hence, in our ex post moral hazard setting, if one seeks to characterize the optimal

profile of medical expenses and insurance coverage in the population with hetero-

geneous health states, then there is no loss of generality in restricting attention to

umbrella policies. Fee-for-service policies should be chosen so as to induce this pro-

file.19 We have reached this conclusion by considering that the medical industry offers

an aggregate good ("health care") in an effi cient way. Of course, that does not mean

that the optimization of fee-for-service policies is a secondary issue, but, among many

reasons, this may be due to productive ineffi ciencies in the health industry, or because

fee-for-service policies reduce transaction costs or allow insurers to better monitor the

use of medical services.
19An umbrella policy with partial coverage at the margin and an upper limit on expenses may

be induced by copayments or coinsurance on medical service, with a limit to the number and value

of reimbursed services. For instance, assume that the umbrella policy can be approximated by a

piecewise linear function I(m) = (1 − α) inf{m,m}, and consider the case where there is a single

type of relevant act in state ω1 (a visit to a specialist, including the purchase of drugs), and denote

n, y and p, the number, quantity and price of each act. We restrict attention to stationary behaviour

where the quantity is the same for each act. Then, we may define the fee-for-service policy in state

ω1 by T (ω1, n, y) = (1− α)p inf{n, n} × inf{y, y}, where n is an upper limit for the number of visits

to the physician, py is an upper expense limit per visit and α is a coinsurance rate. If pny = m,

then in state ω1 the policyholder chooses n and y as if she were compensated by the umbrella policy

I(m) = (1−α) inf{m,m}. Analyzing how the outcome of a more general umbrella policy I(m) could

be reproduced or, at least, approximated by a fee-for-service policy is an important issue in its own

right, and should be the subject of further study.
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With the umbrella policy, the indemnity payment I(ω1,m) is conditioned by pub-

licly available information ω1. An incentive compatible mechanism now specifies the

indemnity Î(x, ω1) and the health expenses m(x, ω1) with Î(x, ω1) ≡ I(ω1,m(x, ω1)).

Let f(x |ω1 ) be the density function of x conditional on ω1, with support [0, a(ω1)].

An optimal mechanism maximizes the policyholder’s expected utility∫
Ω

∫ a(ω1)

0

{u(w − P + Î(x, ω1)−m(x, ω1))

+h0 − γx[1− v(m(x, ω1))]} f(x |ω1 )dxdP(ω1, ω2),

subject to the insurer’s break-even constraint

P ≥
∫

Ω

∫ a(ω1)

0

Î(x, ω1)f(x |ω1 )dxdP(ω1, ω2),

and to the feasibility constraints (6)-(9) where x is replaced by (x, ω1). Conclusions

would be qualitatively unchanged: given ω1, positive indemnity are paid for all ill-

ness severity, with partial coverage at the margin and possibly bunching at the top.20

Bunching then takes a more concrete and realistic form: insurance indemnities in-

crease till medical expenses reach an upper limit m(ω1) that depends on the publicly

available information on the policyholder’s health state.

20Proofs of Proposition 1-3 and Corollaries 1-2 could be straighforwardly adapted to this more

general setting. This is particularly true when the policyholder can always increase her expenses

whatever the publicly available information, i.e., when
∑S

s=1 psnsys has no upper limit when (n, y) ∈

K(ω1). Otherwise, m(x, ω1) is bounded by this upper limit. Thus, in addition to the information rev-

elation mechanism, bunching could then occur at the top just because publicly available information

prevents the policyholder to overspend.
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4 Alternative models and robustness

4.1 Correlated background risk

The results of Section 3 extend to the case where the health level affects monetary

income through an uninsurable background risk.21 Let us assume that illness severity x

randomly reduces the monetary wealth by an amount ε, with conditional c.d.f. G(ε, x).

We assume G′x(ε, x) < 0. Thus, an increase in the illness severity level x shifts the

distribution function of ε in the sense of first-order dominance. Now, the individual’s

utility is written as u(R− ε) +H, where R denotes the monetary wealth excluding the

background risk, and we have

V (x, x̃) = u(R(x̃), x) + h0 − γx[1− v(m(x̃))],

still with R(x̃) ≡ w − P + Î(x̃)−m(x̃), where

u(R, x) ≡
∫ +∞

0

u(R− ε)dG(ε, x).

Thus, the utility of wealth is now written as a state dependent function u(R, x), with

u′R > 0, u′′R2 < 0, u′x < 0 and u′′Rx > 0. Lemma 2 straighforwardly extends Lemma 1 to

this case.

Lemma 2 Under correlated background risk, the direct revelation mechanism {m(.), Î(.)}

is incentive compatible if and only if

Î ′(x) =

[
1− γxv′(m(x))

u′R(R(x), x)

]
m′(x),

m′(x) ≥ 0,

for all x ∈ [0, a], with R(x) ≡ w − P + Î(x)−m(x).

21An example is when the individual may lose a part of her business or wage income when her

health level deteriorates.
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Thus, the necessary and suffi cient conditions for incentive compatibility are almost

unchanged: we just have to replace u(R) with the state-dependent utility u(R, x).

Proposition 1, 2 and 3 can be adapted to the case where the individual incurs a

correlated background risk, with unchanged conclusion, i.e., the fact that the optimal

indemnity schedule does not include a deductible and that bunching at the top may

be optimal. Corollary 2 is still valid, but not Corollary 1. In other words, bunching

may be optimal when x is uniformly distributed. Indeed, simulations show that the

correlated background risk reinforces the likelihood of bunching.22 We simulate the

optimal contract under the assumption ε ≡ kx/(a − x) = ε(x) and u(R(x), ε) =

u(R(x) − ε(x)),where parameter k measures the intensity of the background risk.

Figure 3 illustrates a case where k = 0.01 with bunching for the optimal contract.23

Figure 3

4.2 Non-separable utility

We now turn to the case where U(R,H) may be non-separable between R and H.24

It is assumed that U(R,H) is increasing with respect to R and H and concave. We

22At first glance, one might think that bunching is less likely to be optimal when a correlated

background risk creates a supplementary link between illness severity and available income, in addition

to the cost of medical services. In other words, the background risk would reinforce the need for a

larger insurance coverage when the severity of illness increases. In fact, this is a misleading intuition.

Indeed, to preserve incentive compatibility, a $1 increase in the insurance indemnity requires that

medical expenses grow by more than $1. Hence, if these increases are not optimal without background

risk, they will be even less desirable when a correlated background risk exacerbates the variations

in the expected marginal utility of wealth due to changes in medical net expenses. The simulations

illustrated in Figure 3 confirm this conclusion.
23In Figure 3-top, indifference curves for x = 7 and 9 almost coincide. Figure 3-bottom shows that

m decreases when k increases, with a decrease in the upper limit of the insurance indemnity I(m).

There is bunching only when k > 0 since Figure 3 corresponds to the case of uniform distribution.
24Henceforth, we assume there is no background risk.
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thus have U ′R > 0, U ′H > 0, U ′′R2 < 0, U ′′H2 < 0 and U ′′R2U
′′
H2 − U ′′2RH > 0. We also assume

U ′′HR > 0,25 and we denoteΦ(R,H) ≡ U ′H/U
′
R the marginal rate of substitution between

monetary wealth and health, with

Φ′R =
U ′′HRU

′
R − U ′HU ′′R2
U ′2R

> 0,

Φ′H =
U ′′H2U ′R − U ′HU ′′HR

U ′2R
< 0.

Thus, the individual is more willing to pay for a marginal improvement in her health

level when her income is higher and when her health level is lower. We now have

V (x, x̃) = U
(
w − P + Î(x̃)−m(x̃)), h0 − γx[1− v(m(x̃))]

)
.

Lemma 3 is a direct extension of Lemma 1 to the case of a non-separable utility

function, with a similar interpretation.

Lemma 3 Under non-separable utility, the direct revelation mechanism {m(.), Î(.)}

is incentive compatible if and only if

Î ′(x) = [1− γxv′(m(x))Φ (R(x), H(x))]m′(x), (11)

m′(x) ≥ 0, (12)

for all x ∈ [0, a], where R(x) ≡ w−P + Î(x)−m(x) and H(x) ≡ h0−γx[1− v(m(x)).

Now, the optimal incentive compatible mechanism maximizes∫ a

0

{
U
(
w − P + Î(x)−m(x)), h0 − γx(1− v(m(x)))

)}
f(x)dx

with respect to Î(.),m(.), h(.) and P , subject to Î(0) = 0, and (2),(7)-(9), and

Î ′(x) = [1− γxv′(m(x))Φ (R(x), H(x))]h(x). (13)

25The assumption U ′′HR > 0 is made for the sake of simplicity. One can check that Lemma 3

and following developments are still valid under more general conditions that are compatible with

U ′′HR ≤ 0. See the proof of Lemma 2.
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We have simulated the non-separable utility case with U(R,H) = (b0
R1−α

1−α +b1)Hβ.26

The optimal indemnity schedule remains qualitatively similar to the characterization

provided in Section 2. Figure 4-top illustrates the case of an exponential distribution

with bunching.27

Figure 4

4.3 Insurance loading

In practice, insurance pricing includes a loading that reflects various underwriting

costs, including commissions to agents and brokers, operating expenses, loss adjust-

ment expenses and capital cost. Let us assume that the premium is loaded at rate σ,

which gives

P = (1 + σ)

∫ a

0

Î(x)f(x)dx, (14)

instead of (2). As initially established by Arrow (1971), the optimal contract contains

a straight deductible when there is a positive constant loading factor. Proposition 4

extends this characterization to the case of ex post moral hazard.

Proposition 5 Under constant positive loading σ and with the same assumptions as

Proposition 2, the optimal indemnity schedule includes a deductible D > 0 and an

upper limit I(m), that is

I(m) = 0 if m ≤ D,

I ′(D) ∈ [0, 1),

I ′(m) ∈ (0, 1) if m ∈ [D,m),

I(m) = I(m) if m ≥ m,

I ′(m) = 0 if x = a, I ′(m) > 0 if x < a.

26Thus, utility is CRRA w.r.t. wealth. Parameters are α = 2, β = 0.5, b0 = 0.01 and b = 1.
27Figure 4-bottom adds a background risk and a loading factor, and it illustrates the optimality of

a deductible, as shown in Section 4.3.
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Corollary 3 Under the same assumptions as Corollary 1, we have x = a, i.e., there

is no bunching.

Corollary 4 Under the same assumptions as Corollary 2, we have x < a, i.e., there

is bunching.

Figures 5 illustrates Corollary 4 in the case of an exponential distribution. Load-

ing shifts the indemnity schedule rightward and creates a deductible, in addition to

bunching at the top.

Figure 5

5 Auditing

We still consider allocations {m(x), Î(x)}|x∈[0,a] that are induced by non-linear indem-

nity schemes I(m) with Î(x) ≡ I(m(x)). However, as in the costly state verification

approach introduced by Townsend (1979), we now assume that the insurer can verify

the health state x by incurring an audit cost c > 0. We restrict attention to a de-

terministic auditing strategy, in which the insurer audits the insurance claims larger

than a threshold m∗, or equivalently when x > x∗ = inf{x : m(x) > m∗}.28 In the

case of an audit, the policyholder’s medical expenses are capped by the expense profile

m(x).29 In other words, audit allows the insurer to monitor the policyholder’s med-

ical expenses. Thus, a type x individual chooses his health expenses m′ under the

constraint m′ ≤ sup{m∗,m(x)}, and she receives indemnity I(m′).

Definition 1 {I(m),m(x),m∗, P}|x∈[0,a] implements the allocation {m(x), Î(x), x∗, P}|x∈[0,a]

if (i) : m(x) is an optimal expense choice of type x individuals under indemnity schedule

28We here postulate that m(x) is a non-decreasing function, which will be the case in what follows.
29The policyholder is subject to prior authorisation for increasing her medical expenses above m∗.

After auditing the health state, this authorisation will be granted but capped by m(x) if x > x∗, and

otherwise it will be denied.
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I(m), constraint m ≤ sup{m∗,m(x)}, and insurance premium P ,(ii) : Î(x) = I(m(x))

for all x ∈ [0, a], and (iii) : there is audit when x > x∗ = inf{x : m(x) > m∗}.

For the sake of realism, we restrict attention to (piecewise differentiable) continuous

functions I(m) such that I ′(m) ≤ 1, although, as we will see, an upward discontinuity

of I(m) at m = m∗ would be optimal.30 We denote g(x) ≡ Î ′(x) when x > x∗ , and, as

previously, h(x) = m′(x) for all x. For simplicity, we come back to our initial model,

with separable utility and without background risk nor loading. The optimization

problem is written as

max

∫ a

0

{
u(w − P + Î(x)−m(x)) + h0 − γx[1− v(m(x))]

}
f(x)dx

with respect to Î(x),m(x), g(x), h(x), x∗ ∈ [0, a], and P , subject to Î(0) = 0,(7) and

(9) for all x, (6) and (8) if x ≤ x∗, and

Î ′(x) = g(x) if x > x∗, (15)

0 ≤ g(x) ≤ h(x) if x > x∗, (16)

P =

[∫ x∗

0

Î(x)f(x)dx+

∫ a

x∗
[Î(x) + c]f(x)dx

]
. (17)

Now, we have an optimal control problem with two regimes, according to whether x

is smaller or larger than x∗ and where g(x) is a new control variable when x > x∗.31 In

the first stage, we will characterize the optimal trajectory Î(x),m(x) over the interval

(x∗, a], for a given trajectory Î(x),m(x) over [0, x∗] and for given values of P and x∗. In

30Since an upward discontinuity of I(m) at m = m∗ dominates the optimal solution when I(m) is

constrained to be continuous, increasing I(m) as much as possible in a small interval (m∗,m∗ + ε)

would bring the continuous function I(m) arbitrarily close to this discontinuous function. No optimal

solution would exist in the set of continuous functions I(m). Thus, in addition to being realistic from

an empirical point of view, the assumption I ′(m) ≤ 1 eliminates this reason for which an optimal

solution may not exist.
31If c = 0, then the first-best allocation would be feasible with x∗ = 0, that is by auditing the

health state in all possible cases. Thus, choosing x∗ smaller than a is optimal when c is not too large,

and this is what we assume in what follows.
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the second stage, we will solve for the optimal trajectory Î(x),m(x), x ∈ [0, x∗] and for

the optimal values of P and x∗, given the characterization of the optimal continuation

trajectory.

Let I∗ = Î(x∗) and m∗ = m(x∗), with I∗ ≤ m∗. For {Î(x),m(x), x ∈ [0, x∗]}, P

and x∗ given and such that

P ≥
∫ x∗

0

Î(x)f(x)dx+ (I∗ + c)[1− F (x∗)], (18)

u′(w − P −m∗ + I∗) ≥ γx∗v′(m∗), (19)

{Î(x),m(x), g(x), h(x), x ∈ (x∗, a]} maximizes∫ a

x∗

{
u(w − P + Î(x)−m(x)) + h0 − γx[1− v(m(x))]

}
f(x)dx, (20)

subject to (7), (15)-(17). This is a subproblem restricted to x ∈ (x∗, a] with a non-

empty set of feasible solutions.32

Lemma 4 The optimal continuation allocation is such that

Î ′(x) = m′(x) = 0 if x ∈ [x∗, x̃],

Î ′(x) = 0,m′(x) = − γv′(m(x))

γxv′′(m(x)) + u′′(R(x))
if x ∈ [x̃, x̂],

Î ′(x) = m′(x) = − v′(m(x))

xv′′(m(x))
if x ∈ (x̂, a],

where R(x) = w − P −m(x) + I∗ and x∗ ≤ x̃ ≤ x̂ < a, with x∗ = x̂ for the optimal

allocation.

If (18) is not binding, but the difference between its left-hand and right-hand sides

is small, then increasing Î(x) over I∗ is strongly constrained. Lemma 4 says that the

increase in Î(x) should then be concentrated on the highest values of x, that is when

32 Î(x) = I∗,m(x) = m∗, g(x) = 0, h(x) = 0 for all x ∈ (x∗, a] is a feasible solution because of (18).

Conversely, (18) holds for any solution such that g(x) = Î ′(x) ≥ 0 for all x ∈ (x∗, a]. Furthermore,

(19) is implied by (7), (8) and (15)-(17). Thus, we may assume (18) and (19) without loss of generality.
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x > x̂ with x̂ ∈ [x∗, a]: these values correspond to the largest health expenses, and

thus to the cases where the marginal utility of wealth is the largest. In the lowest

part of the interval, i.e., when x < x̃, not increasing health expenses may be optimal.

Lemma 4 also states that the optimal insurance contract provides full coverage at the

margin, that is Î ′(x) = m′(x), when x > x̂. There is nothing astonishing here: in

the case of an audit, there is no more asymmetry of information, and the policyholder

should be fully compensated for any increase in her insurable losses.33 Finally, it is

also intuitive that a globally optimal allocation should be such that x∗ = x̂, because

auditing is useless if the indemnity does not increase above the maximum I∗ that can

be reached in the no-audit regime.

Let V (m∗, I∗, x∗, P, A) be the value of the integral (20) at an optimal continuation

equilibrium, where

A =

∫ x∗

0

Î(x)f(x)dx. (21)

Our global optimization problem can be rewritten as

max

∫ x∗

0

{
u(w − P + Î(x)−m(x)) + h0 − γx[1− v(m(x))]

}
f(x)dx+V (m∗, I∗, x∗, P, A)

with respect to {Î(x),m(x), g(x), h(x), x ∈ [0, x∗]}, x∗ ≥ 0, A and P , subject to Î(0) =

0, I∗ = Î(x∗),m∗ = m(x∗), (6)-(9) and (21). The optimal solution to this problem and

the corresponding indemnity schedules are characterized as follows.

Proposition 6 The optimal mechanism with audit is such that x∗ > 0, with

Î ′(x) = m′(x) > 0 if x ∈ (x∗, a],

33See Gollier (1987) and Bond and Crocker (1997) for similar results; see also Picard (2013) for a

survey on deterministic auditing in insurance fraud models. Lemma 4 also characterizes the optimal

health expenses profile m(x) when there is auditing and full insurance at the margin (that is when

x > x̂): we have m′(x) = −v′(m(x))/xv′′(m(x)), which means that the increase in health expenses

which follows a unit increase in the illness severity x is equal to the inverse of the elasticity of the

marginal effi ciency of health expenses v′(m(x)). Equivalently, the marginal utility of health care

expenses γxv′(m(x)) should remain constant in the auditing regime.
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and with an upward discontinuity of Î(x) and m(x) at x = x∗. Furthermore, under

the same assumptions as Proposition 2, there is x ∈ (0, x∗] such that

0 < Î ′(x) < m′(x) if 0 ≤ x < x,

Î(x) = Î(x),m(x) = m(x) if x < x ≤ x∗.

Proposition 7 Under the same assumptions as Proposition 2, the optimal indemnity

schedule with audit is such that m∗ = m ≡ m(x) > 0, and

I ′(m) ∈ (0, 1) if m ∈ (0,m),

I ′(m) = 1 if m > m.

Hence, audits allows the insurer to offer a protective shield that limits the policy-

holder’s copayment m(x) − Î(x). This copayment increases with the expenses when

there is no audit, and it reaches an out-of-pocket maximumm−I(m) when the expenses

reaches the threshold m∗ = m ≡ m(x) above which an audit is triggered. The thresh-

old m is reached by a positive mass subset of individuals (those with x ∈ [x, x∗]) in the

case of bunching. The incentive compatibility constraint vanishes when the health state

is audited, which explains why crossing the border between the two regimes should be

accompagnied by an upward jump in health expenses from m to m(x∗), and insurance

payment from I(m) to I(m(x∗)) = I(m) +m(x∗)−m.

Proposition 6 is illustrated in Figure 6, in the exponential distribution case with

c = 0.25. We have x∗ ' 4.85. There is coinsurance at the margin, with bunching at

the top when m < m∗ = m, and an upward discontinuity of Î(x) and m(x) at x = x∗.

There is full insurance at the margin, that is I ′(m) = 1 when m ≥ m∗, with a limit

of out-of-pocket expenses equal to m∗ − I(m∗). In Figure 6-bottom, the two regimes

of the I(m) locus are patched together by a dotted line from m∗ = m ' 0.41 to

m(x∗) ' 0.95 with constant slope equal to one, in order to define I(m) for all m ≥ 0,

but m is never chosen in (m,m(x∗)).34

34The bunching of types is no more sustained by a kink in the indemnity schedule I(m) at m = m,

but by the threat of an audit, since increasing expenses above m will not be possible if x ≤ x∗.
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The dependency between the threshold x∗ and the audit cost c is simulated in

Figure 7. As expected, the larger the audit cost, the larger the threshold above which

it is optimal to audit health care expenses.

Figures 6 and 7

Finally, for the sake of realism, we may enrich the previous characterization by

assuming that the the insurance premium is computed with a loading factor σ > 0,

which gives35

P = (1 + σ)

[∫ x∗

0

Î(x)f(x)dx+

∫ a

x∗
[Î(x) + c]f(x)dx

]
.

Unsurprisingly, the optimal indemnity schedule, under the continuity assumption for

I(m), now mixes a deductible D > 0 and a maximum of out-of-pocket expenses m−

I(m).

Proposition 8 Under constant positive loading σ, the optimal indemnity schedule

includes a deductible D > 0. Under the same assumptions as Proposition 2, we have

I(m) = 0 if m ≤ D,

I ′(m) ∈ (0, 1) if m ∈ (D,m),

I ′(m) = 1 if m > m.

Proposition 8 is illustrated in Figure 8, here also in the exponential distribution

case. The larger the loading factor σ, the larger the deductible D.

Figure 8
35The fact that the loading also applies to audit costs is an innocuous assumption. It amounts to

replacing c with (1 + σ)c.
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6 Conclusion

Using demand management to mitigate the consequences of ex post moral hazard

in medical insurance goes through an adequate definition of the indemnity schedule.

In this paper, we have characterized an optimal health care reimbursement scheme

under various assumptions. We have started with the most simple case of separable

utility. Not in full generality, but under reasonable assumptions, the optimal solution

mixes partial coverage at the margin and an upper limit to coverage under the form of

bunching: the most acute types of illness severity lead to the same expenses and to the

same insurance indemnity. Coinsurance is indeed the most usual way to mitigate health

expenses under ex post moral hazard, but upper limits on coverage also frequently exist

through caps on various types of health expenditures.36 Insurance contracts under ex

post moral hazard trade off risk sharing and incentives, but bunching high-severity

low-probability illnesses is also likely part of the optimal solution to this trade-off.

However, the optimal indemnity schedule, and thus its slope and upper limit, depend

on the publicly available information on the policyholder’s health state. We have also

shown that this characterization remains valid in the case of a correlated background

risk and when utility is non-separable between wealth and health.

Our second main result is about the optimality of a deductible. A deductible may

be optimal only if the insurer charges loaded premiums. In other words, deductibles

should not be part of the solution to the incentive-risk sharing trade-off in itself. They

are the consequence of transaction costs reflected in insurance loading, and they reflect

the level of these costs. This is an important difference between ex post and ex ante

moral hazard.

Finally, we have immersed our ex post moral hazard problem in a costly state ver-

ification setting where the insurer can monitor the health expenses through auditing.

We have shown that there should be coinsurance at the margin, and possibly an upper

36See Cutler and Zeckhauser (2000).
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limit to coverage, when the sickness severity is lower than a threshold under which

there is no audit. When the sickness severity crosses this limit, then it is optimal to

audit the health state, with an upward jump in care expenses. In this regime, there

is full insurance at the margin, which corresponds to an upper limit for out-of-pocket

expenses.

Overall, this analysis reveals a contrasting picture of the way health expenses should

be reimbursed by insurers. On the one hand, there are limits to coverage for low

expenses under the combination of coinsurance, upper limit and deductible. On the

other hand, the largest expenses should be more generously covered, with limits to

out-of-pocket expenses. This complexity reflects what we frequently observe in the

real world, all these ingredients being mixed, with more complete coverage and limits

to out-of-pocket expenses, for easily monitorable categories such as surgery or other

forms of inpatient care, and coinsurance or upper limits that aim to contain health

spending for minor illnesses.37

Although we think that it is of utmost importance to establish such general princi-

ples for the design of health insurance, it remains true that translating these principles

into concrete strategy is crucial. This concern is related to the design of fee-for-service

reimbursement rules that best fit the characteristics of an optimal indemnity sched-

ule, and that may allow insurers to better monitor the use of medical services. It is

also related to the role of health care providers. We have restricted ourselves to the

most simple case where doctors and hospitals act as "perfect agents" of policyholders,

without any other behavior rule than choosing the level of health expenses that is in

the policyholders’best interests. The development of various forms of managed care

in many countries reflects the fact that the objectives and constraints of health care

providers may affect the way patients use medical services. This is a dimension that

insurers and policy makers always keep in mind when they design health insurance

37For the sake of illustration, see for instance Kaiser Family Foundation (2009) for France, Germany

and Switzerland, and www.healthcare.gov for the ObamaCare Marketplace in the US.
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plans.
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Appendix 1

Proof of Lemma 1

Step 1: There exists an optimal revelation mechanism.

Let us change variables by denoting A(x) = u(w − P + Î(x)−m(x)) and B(x) =

v(m(x)). The incentive compatibility constraints and the insurer’s break-even con-
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straint are respectively rewritten as

A(x) + γxB(x) ≥ A(x̃) + γxB(x̃) for all x, x̃, (22)

w ≥
∫ a

0

[u−1(A(x)) + v−1(B(x)]f(x)dx, (23)

Furthermore, Î(0) = m(0) = 0 gives A(0) = u(w − P ) and B(0) = 0. Let S be

the subset of functions A(.), B(.) that belong to the Banach space L∞([0, 1],R× [0, 1])

with the sup norm topology ‖ . ‖∞ and that satisfy (22),(23) and B(0) = 0. Hence, S

is closed and convex, and furthermore ‖ (A(.), B(.)) ‖∞≤ u(w) for all (A(.), B(.)) ∈ S.

Let

J =

∫ a

0

{A(x) + h0 − γx[1−B(x)]}f(x)dx.

J is a linear (and thus weakly concave) function of A(.), B(.). Hence, it reaches a max-

imum in S, which proves the existence of an optimal incentive compatible mechanism,

with P = w − u−1(A(0)).

Step 2: For any incentive compatible mechanism,m(x) and Î(x) are non-decreasing.

Incentive compatibility implies

u(w − P −m(x) + Î(x))− u(w − P −m(x̃) + Î(x̃)) ≥ γx[v(m(x̃))− v(m(x))],

and, reversing the roles of x and x̃,

u(w − P −m(x) + Î(x))− u(w − P −m(x̃) + Î(x̃)) ≤ γx̃[v(m(x̃))− v(m(x))].

We deduce (x̃ − x)[v(m(x̃)) − v(m(x))] ≥ 0 for all x, x̃, which implies that m(.) is

nondecreasing. Since I(.) is nondecreasing, Î(.) ≡ I(m(.)) is also nondecreasing.

Step 3: For any optimal revelation mechanism, m(.) and Î(.) are continuous.

Let {m0(.), Î0(.)} be an optimal incentive compatible revelation mechanism and

suppose that m0(.) is rightward discontinuous38 at x∗ ∈ (0, a), with m0(x)→ m0(x∗)+

∆m and Î0(x)→ Î0(x∗)+∆I , when x→ x∗, x > x∗, with∆m > 0 and∆I ≥ 0. Incentive

38A similar proof applies to the case of leftward discontinuity.
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compatibility implies that a type x∗ individual is indifferent betweenm0(x∗), Î0(x∗) and

m0(x∗) + ∆m, Î0(x∗) + ∆I . If ∆I = 0, since I(m) is nondecreasing, it remains constant

whenm ∈ [m0(x∗),m0(x∗)+∆m]. Using the concavity ofm→ u(w−P−m+ Î0(x∗))+

γx∗v(m) then shows that the type x∗ individual reaches a higher expected utility by

choosing m ∈ (m0(x∗),m0(x∗) + ∆m) than by choosing m0(x∗), hence a contradiction.

Thus, we have ∆I > 0.

Since Î0(x) is piecewise continuous, there exists θ > 0 such that Î0(x) − Î0(x∗) ≥

∆I/2 for all x ∈ (x∗, x∗ + θ). Consider another revelation mechanism {m1(.), Î1(.)}

defined by:

(i) If x ∈ (x∗, x∗ + θ), let m1(x) = m∗1 and Î1(x) = I∗1 close to m0(x∗) and Î0(x∗),

respectively, with Î0(x)− I∗1 ≥ ∆I/4, and such that

u(w − P −m∗1 + I∗1 ) + γxv(m∗1) ≥ u(w − P −m0(x) + Î0(x)) + γxv(m0(x)),

for all x ∈ (x∗, x∗ + θ), and

u(w − P −m∗1 + I∗1 ) + γxv(m∗1) < u(w − P −m0(x) + Î0(x)) + γxv(m0(x)),

if x ≤ x∗,

(ii) If x /∈ (x∗, x∗ + θ), then m1(x) ≡ m0(x) and Î1(x) ≡ Î0(x).

Let x̃1(x) be an optimal report of a type x policyholder in {m1(.), Î1(.)}, with

x̃1(x) = x for all x ∈ [0, x∗+θ), and let {m2(.), Î2(.)} be the incentive compatible reve-

lation mechanism defined by m2(x) ≡ m1(x̃1(x)), Î2(x) ≡ Î1(x̃1(x)). For P unchanged,

the policyholder’s expected utility is higher for {m2(.), Î2(.)} than for {m0(.), Î0(.)}.

Furthermore, Î2(x) = Î0(x) if x < x∗, Î2(x) = I∗1 < Î0(x) − ∆I/4 if x∗ ≤ x < x∗ + θ

and Î2(x) ≤ Î0(x) if x ≥ x∗ + θ. Hence, {m2(.), Î2(.)} is feasible with P unchanged,

which contradicts the optimality of {m0(.), Î0(.)}.

Step 4: (4) and (5) are necessary and suffi cient conditions for a continuous reve-

lation mechanism to be incentive compatible.
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Local first-order and second-order incentive compatibility conditions for type x are

written respectively as

∂V (x, x̃)

∂x̃
|x̃=x = 0, (24)

∂2V (x, x̃)

∂x̃2
|x̃=x ≤ 0, (25)

at any point of differentiability. (24) and (25) are necessary conditions for incentive

compatibility. We have

∂V (x, x̃)

∂x̃
= u′(R(x̃))[Î ′(x̃)−m′(x̃)] + γxv′(m(x̃))m′(x̃),

and thus (24) yields (4).

Since (4) should hold for all x ∈ [0, a], a simple calculation yields

∂2V (x, x̃)

∂x̃2
|x̃=x = −γv′(m(x))m′(x),

and thus (25) gives (5).

Conversely, assume (4) and (5) hold. (4) gives

∂V (x, x̃)

∂x̃
= γ(x− x̃)v′(m(x̃))m′(x̃).

Using (5) then shows that ∂V (x, x̃)/∂x̃ ≤ 0 if x̃ > x and ∂V (x, x̃)/∂x̃ ≥ 0 if x̃ < x,

which implies incentive compatibility.

Proof of Proposition 1

Let µ1(x) and µ2(x) be costate variables for Î(x) and m(x) respectively, and let

λ and δ(x) be Lagrange multipliers respectively for (2) and (9). The Hamiltonian is

written as

H = [u(R(x)) + γxv(m(x))]f(x) + µ1(x)h(x)

[
1− γxv′(m(x))

u′(R(x))

]
+ µ2(x)h(x)− λÎ(x)f(x) + δ(x)Î(x).
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The optimality conditions are

ϕ(x) ≡ µ1(x)

[
1− γxv′(m(x))

u′(R(x))

]
+ µ2(x) ≤ 0,= 0 if h(x) > 0, (26)

µ′1(x) = [λ− u′(R(x))]f(x)− µ1(x)h(x)γx
v′(m(x))u′′(R(x))

u′(R(x))2
− δ(x), (27)

µ′2(x) = [u′(R(x))− γxv′(m(x))]f(x)

+µ1(x)h(x)γx

[
v′′(m(x))u′(R(x)) + v′(m(x))u′′(R(x))

u′(R(x))2

]
, (28)

µ1(a) = µ2(a) = 0, (29)

λ−
∫ a

0

[
u′(R(x))f(x) + µ1(x)h(x)γx

v′(m(x))u′′(R(x))

u′(R(x))2

]
dx = 0, (30)

with δ(x) ≥ 0 and δ(x) = 0 if Î(x) > 0. A tedious but straightforward calculation

using (27) and (28) leads to

ϕ′(x) = [λf(x)− δ(x)]

[
1− γxv′(m(x))

u′(R(x))

]
− γµ1(x)

v′(m(x))

u′(R(x))
. (31)

We also have R′(x) = Î ′(x)−m′(x) = −γxh(x)v′(m(x))/u′(R(x)) ≤ 0. Thus, R(x) is

non-increasing, and it is decreasing when h(x) > 0. The remaining part of the proof

is in five steps.

Step 1: m(x) = 0 for all x > 0.

Since m(0) = 0 and m(x) is non-decreasing, there exists x ∈ [0, a] such that

m(x) > 0 if and only if x > x. Suppose x > 0, which implies h(x) = 0 over [0, x].

Using Î(0) = 0 and (6) gives Î(x) = 0 for all x ∈ [0, x]. Let

m̂(x) ≡ arg max
m̃≥0

{u(w − P − m̃) + γxv(m̃)}, (32)

with m̂(x) > 0 for all x > 0. Define m0(x) = m̂(x), I0(x) = 0 if x ≤ x and

m0(x) = m(x), I0(x) = Î(x) if x > x, and

x0(x) ∈ arg max
x̃∈[0,a]

{u(w − P −m0(x̃) + I0(x̃)) + xv(m0(x̃))}.
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The revelation mechanism m1(.), Î1(.) defined by m1(x) ≡ m0(x0(x)) and Î1(x) ≡

I0(x0(x)) is incentive compatible and it dominates the supposed optimal mechanism

m(.), Î(.) - i.e., it provides a higher expected utility to the policyholder and its expected

profit is non-negative for P unchanged -, hence a contradiction. Thus, x = 0.

Step 2: µ1(x) is continuous in [0, a] with µ1(x) = 0 if Î(x) = 0.

Let x0 ∈ (0, a) be a junction point such that Î(x) = 0 if x ∈ (x0 − ε, x0] and

Î(x) > 0 if x ∈ (x0, x0 + ε), with 0 < ε < x0.39

Using the same argument as in Step 1 shows that h(x) > 0 in (x0 − ε, x0). Let

x ∈ (x0−ε, x0). Using h(x) > 0, Î ′(x) = 0 and (6) gives u′(R(x)) = γxv′(m(x)). Then,

ϕ(x) = 0 gives µ2(x) = 0 and thus µ′2(x) = 0 for all x ∈ (x0 − ε, x0]. (31) implies

µ1(x) = 0 for all x ∈ (x0− ε, x0), and this is true, more generally, for all x ∈ [0, a] such

that Î(x) = 0.

Let x ∈ (x0, x0 + ε). Î(x) is locally increasing over (x0, x0 + ε) and thus Î ′(x) > 0

and h(x) > 0 (at least for ε small enough). Thus, we have δ(x) = ϕ(x) = ϕ′(x) = 0

for all x ∈ (x0, x0 +ε). Since R(x) and m(x) are continuous functions and u′(R(x0)) =

γx0v
′(m(x0)), we have u′(R(x)) − γxv′(m(x)) → 0 when x ↘ x0. Using (31) then

gives µ1(x0)+ = 0. Thus, µ1(x) is continuous at x0.

Step 3: µ1(x) ≥ 0 for all x ∈ [0, a].

Integrating µ′1(x) given by (27) and using (29) and (30) give

µ1(0) =

∫ a

0

δ(x)dx ≥ 0.

Suppose there exist x0, x1 ∈ [0, a] such that x0 < x1, µ1(x0) = µ1(x1) = 0 and

µ1(x) < 0 if x ∈ (x0, x1). Thus, from Step 2, we have I(x) > 0 and δ(x) = 0 if

x ∈ (x0, x1). For η0 > 0 small enough, we have µ′1(x0 + η0) < 0 and δ(x0 + η0) = 0.

39In optimal control problems with state variable constraints, the costate variable may be discon-

tinuous at junctions between regimes where the constraint is binding or not binding; see for instance

Section 7.6 in Beavis and Dobbs (1991). Here, µ1(x) may be discontinuous at junction points between

intervals where Î(x) = 0 and intervals where Î(x) > 0. The proof is almost the same if the junction

point is such that Î(x) > 0 if x ∈ (x0 − ε, x0] and Î(x) = 0 if x ∈ (x0, x0 + ε).
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Hence (27) gives

[λ− u′(R(x))]f(x) < µ1(x)h(x)γx
v′(m(x))u′′(R(x))

u′(R(x))2

for x = x0 + η0. The previous inequality holds when η0 ↘ 0. Since µ1(x) is continuous

and µ1(x0) = 0, we deduce u′(R(x0)) ≥ λ.

By a similar argument, for η1 > 0 small enough, we have µ′1(x1 − η1) > 0 and

δ(x1 − η1) = 0. Thus (27) gives

[λ− u′(R(x))]f(x) > µ1(x)h(x)γx
v′(m(x))u′′(R(x))

u′(R(x))2
> 0,

for x = x1 − η1. The previous inequality holds when η1 ↘ 0, which implies λ >

u′(R(x1)). Thus, we have u′(R(x0)) ≥ λ > u′(R(x1)). Since u′′ < 0, we deduce

R(x0) < R(x1), which contradicts R′(x) ≤ 0 and x0 < x1.

Step 4: Î ′(x) ≥ 0 for all x ∈ [0, a].

Suppose Î(x) > 0 and Î ′(x) < 0 if x ∈ [x0, x1] ⊂ (0, a] with x0 < x1. (6) and (8)

yield h(x) > 0 - and thus ϕ(x) = 0 - and γxv′(m(x)) > u′(R(x)) if x ∈ [x0, x1]. We

also have δ(x) = 0, µ1(x) ≥ 0 if x ∈ [x0, x1]. Hence (31) gives ϕ′(x) < 0 if x ∈ [x0, x1],

which contradicts ϕ(x) ≡ 0 in [x0, x1]. Thus, Î(x) is non-decreasing over [0, a].

Step 5: Î(x) > 0 for all x ∈ (0, a].

Step 4 implies that there exists x0 in [0, a] such that Î(x) = 0 if x ∈ [0, x0] and

Î(x) > 0 if x ∈ (x0, a]. Suppose x0 > 0. From Step 2, we have µ1(x) = 0 for all

x ∈ [0, x0], and

µ1(0) =

∫ x0

0

δ(x)dx = 0

implies δ(x) = 0 over [0, x0].40 (27) then gives R′(x) = 0 and thus h(x) = 0 for all

x ∈ [0, x0]. From the same argument as in Step 1, we have m(x) = m̂(x), and thus

h(x) > 0, for all x ∈ [0, x0], hence a contradiction.

40Note that (27) and µ1(x) = µ′1(x) = 0 for all x ∈ [0, x0] imply that δ(x) is continuous in this

interval.
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We know from (6) and (7) that Î ′(x) < m′(x) when m′(x) > 0, and thus Steps 1

and 5 prove Proposition 1.

Figure 9 illustrates the simulated trajectories of µ1(x) and µ2(x) under the calibra-

tion hypothesis introduced in Section 3.3, in the case of an exponential distribution

function.

Figure 9

Proof of Proposition 2

Suppose there are x1, x2, x3 in [0, a] such that x1 < x2 < x3, h(x) = 0 if x ∈ [x1, x2]

and h(x) > 0 if x ∈ (x2, x3]. Thus, m(x) and I(x) remain constant over [x1, x2], and

we may write m(x) = m0 > 0, I(x) = I0 > 0 and R(x) = w − P + I0 −m0 = R0 in

this interval. Let ϕ(x) be defined as in the proof of Proposition 1. Using (27), (31)

and δ(x) = h(x) = 0 if x ∈ [x1, x2] yields

ϕ′(x) = λ[1− γxv′(m0)

u′(R0)
]f(x)− γµ1(x)

v′(m0)

u′(R0)
, (33)

and

ϕ′′(x) = λ[1− γxv′(m0)

u′(R0)
]f ′(x)− γ v

′(m0)

u′(R0)
[λf(x) + µ′1(x)]

= λ[1− γxv′(m0)

u′(R0)
]f ′(x)− γ v

′(m0)

u′(R0)
[2λ− u′(R0)]f(x),

if x ∈ [x1, x2]. Let

Λ(x) ≡ ϕ′′(x)

f(x)
= λ[1− γxv′(m0)

u′(R0)
]
d ln f(x)

dx
− γ v

′(m0)

u′(R0)
[2λ− u′(R0)],

We have

Λ′(x) = −λγ v
′(m0)

u′(R0)

d ln f(x)

dx
+ λ[1− γxv

′(m0)

u′(R0)
]
d2 ln f(x)

dx2
.

We also have ϕ(x) ≤ 0 if x ∈ [x1, x2] and ϕ(x2) = 0, which implies ϕ′(x2)− ≥ 0. (31),

δ(x2) = 0 and µ1(x2) > 041 give γx2v
′(m0) ≤ u′(R0). If f(x) is non-increasing and

41Step 3 in the proof of Proposition 1 shows that µ1(x) > 0 for all x ∈ (0, a).
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condition (10) holds, then we have Λ′(x) ≥ 0 if x ≤ x2.42 Suppose there is x4 ∈ [0, x2]

such that ϕ(x4) = 0 and h(x) = 0 for all x ∈ [x4, x2]. Since ϕ(x) = 0 for all x ∈ [x2, x3],

we have ϕ′′(x2)+ = 0. Since I0 > 0, µ1(x) is differentiable at x = x2. Thus, using (31)

and δ(x) = 0 if x ∈ [x1, x2] allows us to write

ϕ′′(x2)− = ϕ′′(x2)+ + γ[λf(x2)x2 + µ1(x2)]
d

dx

(
v′(m(x))

u′(R(x))

)
|x=x2+

< 0.

Λ(x2)− < 0 and Λ′(x) ≥ 0 then yield ϕ′′(x) < 0 for all x ∈ [x4, x2]. Since ϕ(x2) = 0

and ϕ′(x2)− ≥ 0, we have ϕ(x) < 0 for x < x2, x close to x2. Since ϕ(x2) = ϕ(x4) = 0,

there is x5 ∈ (x4, x2) where ϕ(x) has a local minimum, and thus such that ϕ′′(x5) ≥ 0,

which contradicts ϕ′′(x) < 0 for all x ∈ [x4, x2]. Thus, ϕ(x) < 0 for all x in [0, x2),

which contradicts ϕ(0) = 0. Hence, if h(x) > 0 in an interval (x2, x3], then h(x) > 0

in [0, x3], which shows that there exists x ∈ [0, a] such that h(x) > 0 if x < x and

h(x) = 0 if h(x) > x. We observe that x > 0, for otherwise we would have I(x) = 0

for all x in [0, a].

Finally, if x ∈ (0, x) we have µ1(x) > 0, δ(x) = 0, ϕ′(x) = 0, and thus (31) gives

γxv′(m(x)) < u′(R(x)). Using (6) then yields Î ′(x) > 0.

Proof of Corollary 1

For notational simplicity, assume a = 1 and f(x) = 1 for all x ∈ [0, 1]. Suppose

x < 1. Using (31) and h(x) = δ(x) = 0 if x ∈ [x, 1] gives

ϕ′′(x) = −γ v
′(m)

u′(R)
[2λ− u′(R)] ≡ ϕ′′

if x ∈ (x, 1]. The same argument as in the proof of Proposition 2 gives ϕ′′ = ϕ′′(x)+ <

ϕ′′(x)− = 0. Since ϕ′(x)+ ≤ 0, we have ϕ′(x) < 0 for all x ∈ [x, 1], which contradicts

ϕ(x) = ϕ(1) = 0.

Proof of Corollary 2
42Assume that f(x) is non-increasing. Let x ≤ x2. If d2 ln f(x)/dx2 ≥ 0, then using γx2v′(m0) ≤

u′(R0) directly implies Λ′(x) ≥ 0. If d2 ln f(x)/dx2 < 0, then using (10) and γv′(m0)/u
′(R0) < x ≤ x2

also yields Λ′(x) ≥ 0.
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Assume f(a) = f ′(a) = 0 and f ′′(a) > 0. Suppose x = a and thus h(x) > 0 for all

x ∈ [0, a].43 We also have ϕ′(x) = δ(x) = 0 for all x. Differentiating (31) gives

h(x) = − v′(m(x))J(x)

λxK(x)f(x) + v′′(m(x))µ1(x)
,

where

J(x) = −d ln f(x)

dx
µ1(x) + f(x)[2λ− u′(R(x))],

K(x) = v′′(m(x)) +
γxu′′(R(x))v′(m(x))2

u′(R(x))2
< 0.

The rest of the proof is in three steps.

Step 1: J(x) > 0 if x ∈ (0, a) and J(a) = J ′(a) = J ′′(a) = 0 and h(a) = 0.

Using K(x) < 0, v′′(m(x)) ≤ 0, µ1(x) > 0 and h(x) > 0 gives J(x) > 0 if x ∈ (0, a).

Using µ1(a) = f(a) = 0 gives J(a) = 0. Furthermore, we have

J ′(x) = −d ln f(x)

dx
µ′1(x)− d2 ln f(x)

dx2
µ1(x)

+ f ′(x)[2λ− u′(R(x))]− f(x)u′′(R(x))R′(x). (34)

Using µ1(a) = f(a) = 0, δ(x) = 0 for all x and (27) gives µ′1(a) = 0. (34) and

d ln f(x)/dx 9 −∞, d2 ln f(x)/dx2 9 ±∞ when x → a gives J ′(a) = 0. Since

J(x) > 0 if x ∈ (0, a) and J(a) = J ′(a) = 0, we deduce that J(x) reaches a local

minimum over [0, a] at x = a, which implies J ′′(a) ≥ 0.

Furthermore, using L’Hôpital’s rule twice allows us to write h(a) = −v′(m(a))J ′′(a)/λaK(a)f ′′(a) =

0. Since h(x) ≥ 0 for all x, we deduce J ′′(a) ≤ 0, and thus J ′′(a) = h(a) = 0.

Step 2: u′(R(a)) = γav′(m(a)) = 2λ.

Since f(a) = f ′(a) = µ1(a) = µ′1(a) = 0, we deduce u′(R(a)) = γav′(m(a)) from

(27) and ϕ′(x) ≡ 0 by using the L’Hôpital’s rule twice. Furthermore, (27) gives µ′′1(a) =

0 and (34) then yields J ′′(a) = f ′′(a)[2λ− u′(R(a))], which implies u′(R(a)) = 2λ.

43We assume w.l.o.g. that h(x) is continuous at x = a.
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Step 3: Let ξ(x) ≡ u′(R(x))ϕ′(x), where ϕ(x) is defined by (26). We have ξ′′′(a) >

0, which contradicts ϕ(x) = 0 for all x ∈ [0, a] when x = a.

x = a implies ξ(x) = 0 for all x ∈ [0, a]. We may write ξ(x) = λf(x)∆1(x)−γ∆1(x),

with ∆1(x) = u′(R(x)) − γxv′(m(x)),∆2(x) = µ1(x)v′(m(x)). We have ∆1(a) =

0,∆′1(a) = −γv′(m(a)) from h(a) = 0 and u′(R(a)) = γav′(m(a)). Using (27) and

Step 2 gives

∆′′′2 (a) = µ′′′1 (a)v′(m(a))

= f ′′(a)[λ− u′(R(a))]v′(m(a))

= −λf ′′(a)v′(m(a)).

We have

ξ′′(x) = λf ′′(x)∆1(x) + 2λf ′(x)∆′1(x)

+ λf(x)∆′′1(x)− γ∆′′2(x),

and thus, using ∆1(a) = 0 and f(a) = f ′(a) = 0, we may write

ξ′′′(a) = 3λf ′′(a)∆′1(a)− γ∆′′′2 (a) = −4λ2f ′′(a)

a
> 0.

Proof of Proposition 3

The optimal non-linear indemnity schedule I(m) is such that

I ′(m) =
Î ′(x)

m′(x)
when m = m(x).

for all m ∈ (0,m). Thus, (6), (7), (31) and ϕ′(x) = δ(x) = 0 if x ∈ (0, x) give

I ′(m(x)) = 1− γxv′(m(x))

u′(R(x))
= µ1(x)

γv′(m(x))

λf(x)u′(R(x))
,

which implies I ′(m) ∈ (0, 1) for all m ∈ (0,m), I ′(m) = 0 if x = a, I ′(m) > 0 if x < a,

where m = m(x).

All types x ≥ x choose m = m(x), and thus the optimal allocation is sustained by

an indemnity schedule such that I(m) = I(m) for m ≥ m.
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Let I ′(0) = lim
x→0

I ′(m) ≥ 0. The rest of the proof shows that mv′′(m)/v′(m) →

η ∈ (0, 1) when m→ 0 (an assumption made in what follows) is a suffi cient condition

for I ′(0) > 0. The following lemma will be an intermediary step in an a contrario

reasoning.

Lemma 5 Suppose I ′(0) = 0, then: (i) h(x)→ +∞ when x→ 0. (ii) There exists a

sequence {xn, n ∈ N} ⊂ (0, a] such that 0 < xn+1 < xn for all n, xn → 0 when n→∞

and m(xn)/xn > h(xn) for all n ∈ N.

Proof of Lemma 5

(i): Note that I ′(0) = 0 implies C(x) ≡ xv′(m(x)) → u′(w − P )/γ when x → 0.

If (i) does not hold, then there exists a sequence {xn, n ∈ N} ⊂ (0, a] such that

0 < xn+1 < xn for all n, xn → 0 when n→∞ and h(xn)→ h < +∞ when n→ +∞.

Using v(0) = 0 and L’Hôpital’s rule yields

lim
x→0

C(x) =
1

lim
x→0

[
− v′′(m(x))
v′(m(x))2

h(x)
] =

1

ηh
lim
x→0

[m(x)v′(m(x))] .

Furthermore, mv′′(m)/v′(m) → η > 0 implies mv′(m) → 0 when m → 0. Hence,

C(x)→ 0 when x→ 0, which contradicts C(x)→ u′(w − P )/γ > 0 when x→ 0.

(ii): Let x0 such that h(x) is continuous over (0, x0] and consider the decreasing

sequence {xn, n ∈ N} defined by xn = sup{x ∈ (0, x0] |h(x′) ≥ n if x′ ≤ x}. xn is

well-defined and such that xn → 0 when n→∞ from (i) and, using the continuity of

h(x), we have h(xn) = n and h(x) > n if x < xn. Thus,

m(xn)

xn
=

∫ xn
0
h(x)dx

xn
> n = h(xn),

which completes the proof of (ii).

We are now in the position to end up the proof of the Proposition. Let us suppose

I ′(0) = 0, and letD(x) ≡ γxv′(m(x))−u′(R(x)) withD(x) < 0 if x > 0 from Î ′(x) > 0,
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and D(0) = 0 from I ′(0) = 0. We thus have D′(x) < 0 for x close to 0. We have

D′(x) = γ[v′(m(x) + xv′′(m(x))h(x)]− u′′(R(x))R′(x)

=
γxv′(m(x))

m(x)

[
m(x)

x
+ h(x)

(
v′′(m(x))m(x)

v′(m(x))
+
u′′(R(x))

u′(R(x))
m(x)

)]
.

Consider the sequence {xn, n ∈ N} defined in Lemma 5-(ii). Using m(xn)/xn >

h(xn) gives

D′(xn) =
γxnh(xn)v′(m(xn))

m(xn)

[
1 +

v′′(m(xn))m(xn)

v′(m(xn))
+
u′′(R(xn))

u′(R(xn))
m(xn)

]
Since xn → 0 when n→ +∞, u′′(R(x))/u′(R(x))→ u′′(w−P )/u′(w−P ) and m(x)→

0 when x → 0, and −v′′(m)m/v′(m) → η when m → 0, we deduce that η < 1 is a

suffi cient condition for D′(xn) > 0 when n is large enough, which is a contradiction.

We deduce I ′(0) > 0 when η < 1.

43



Appendix 2

2-A: Computational approach

Our simulations are performed through a discretization method. Under the nota-

tions that are standard in this field, an optimal control problem is usually written as

follows, by denoting x the vector of state variables and u the vector of controls that

are function of time t ∈ R:

min J(x(·), u(·)) = g0(tf , x(tf ))

ẋ(t) = f(t, x(t), u(t)) ∀t ∈ [0, tf ]

u(t) ∈ U for a.e. t ∈ [0, tf ]

g(x(t), u(t)) ≤ 0

Φ(x(0), x(tf )) = 0

Objective (Mayer form)

Dynamics

Admissible Controls

Path Constraints

Boundary Conditions

The time discretization is as follows:

t ∈ [0, tf ] −→

x(.), u(.) −→

Objective −→

Dynamics −→

Admissible Controls −→

Path Constraints −→

Boundary Conditions −→

t0 = 0, . . . , tN = tf

X = {x0, . . . , xN , u0, . . . , uN}

min g0(tf , xN)

xi+i = xi + hf(xi, ui) i = 0, . . . , N

ui ∈ U i = 0, . . . , N

g(xi, ui) ≤ 0 i = 0, . . . , N

Φ(x0, xN) = 0

We therefore obtain a nonlinear programming problem on the discretized state and

control variables. In BOCOP, the discretized nonlinear optimization problem is solved

by the Ipopt solver that implements a primal-dual interior point algorithm; seeWachter

and Biegler (2006). The derivatives required for the optimization are computed by the

automatic differentiation tool Adol-C; see Walther and Griewank (2012).
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2-B: Complementary proofs

Proof of Proposition 4

Let IΩ(.), nΩ(.), yΩ(.), P be a type-contingent allocation that is implemented by the

fee-for-service policy T (.), P . Let I(.) : Ω1 × R+ −→ R+ be defined by

I(ω1,m) = IΩ(ω) if there exists ω = (ω1, ω2) ∈ Ω

such that
∑S

s=1
psnΩs(ω)yΩs(ω) = m,

I(m) = 0 otherwise.

We may first check that I(.) is well-defined. Indeed, assume that there exist ω =

(ω1, ω2) ∈ Ω and ω′ = (ω1, ω
′
2) ∈ Ω such that∑S

s=1
psnΩs(ω)yΩs(ω) =

∑S

s=1
psnΩs(ω

′)yΩs(ω
′) = m,

IΩ(ω′) > IΩ(ω).

Since the allocation is implemented by T (.), P , we have T (ω1, nΩs(ω
′), yΩs(ω

′)) =

IΩ(ω′) > IΩ(ω) = T (ω1, nΩs(ω), yΩs(ω)). Thus, under the fee-for-service policy T (.), P ,

type ω′ policyholders would be better off by choosing (nΩ(ω′), yΩ(ω′)) instead of

nT,P (ω′), yT,P (ω′), since (nΩ(ω), yΩ(ω)) is a feasible choice (i.e., it is in K(ω1)) with

the same cost (and thus with the same improvement in health) and with a larger

insurance indemnity. This would contradict the definition of nT,P (.), yT,P (.).

Secondly, let us show that IΩ(.), nΩ(.), yΩ(.), P is implemented by I(.), P .

Let ω = (ω1, ω2) ∈ Ω and letm0 =
∑S

s=1 psn
0
sy

0
s ≥ 0 with (n0, y0) ∈ K(ω1). Assume

first that there exists ω′ = (ω1, ω
′
2) ∈ Ω such that m0 =

∑S
s=1 psnΩs(ω

′)yΩs(ω
′). From

the definition of I(.) and nT,P (.), yT,P (.), and using the fact that P, T (.) implements
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P, IΩ(.), nΩ(.), yΩ(.), we may write

u(w − P −m0 + I(ω1,m
0)) + γg(ω)v

(
m0
)

= u(w − P −
∑S

s=1
psnΩs(ω

′)yΩs(ω
′) + IΩ(ω′))

+ γg(ω)v
(∑S

s=1
psnΩs(ω

′)yΩs(ω
′)
)

(35)

= u
(
w − P −

∑S

s=1
psnΩs(ω

′)yΩs(ω
′) + T (ω1, nΩs(ω

′), yΩs(ω
′))
)

+ γg(ω)v
(∑S

s=1
psnΩs(ω

′)yΩs(ω
′)
)

(36)

≤ u
(
w − P −

∑S

s=1
psn

T,P
s (ω)yT,Ps (ω) + T (ω1, n

T,P (ω), yT,P (ω))
)

+ γg(ω)v
(∑S

s=1
psn

T,P
s (ω)yT,Ps (ω)

)
(37)

= u
(
w − P −

∑S

s=1
psnΩs(ω)yΩs(ω) + I

(
ω1,
∑S

s=1
psnΩs(ω)yΩs(ω)

))
+ γg(ω)v

(∑S

s=1
psnΩs(ω)yΩs(ω)

)
, (38)

where: (35) follows from the definition of I(.) and the assumption made aboutm0, (36)

holds because P, T (.) implements P, IΩ(.), nΩ(.), yΩ(.), (37) follows from the definition

of nT,Ps (.), yT,Ps (.) and (38) holds because of the definition of I(.) and P, T (.) implements

P, IΩ(.), nΩ(.), yΩ(.).

Assume now that there does not exist ω′ = (ω1, ω
′
2) ∈ Ω such thatm0 =

∑S
s=1 psnΩs(ω

′)yΩs(ω
′).

Then we may write

u(w − P −m0 + I(ω1,m
0)) + γg(ω)v

(
m0
)

= u(w − P −
∑S

s=1
psn

0
sy

0
s) + γg(ω)v

(∑S

s=1
psn

0
sy

0
s

)
(39)

≤ u
(
w − P −

∑S

s=1
psn

0
sy

0
s + T (ω1, n

0
s, y

0
s)
)

+ γg(ω)v
(∑S

s=1
psn

0
sy

0
s

)
(40)

≤ u
(
w − P −

∑S

s=1
psn

T,P
s (ω)yT,Ps (ω) + T (ω1, n

T,P (ω), yT,P (ω))
)

+ γg(ω)v
(∑S

s=1
psn

T,P
s (ω)yT,Ps (ω)

)
(41)

= u
(
w − P −

∑S

s=1
psnΩs(ω)yΩs(ω) + I

(
ω1,
∑S

s=1
psnΩs(ω)yΩs(ω)

))
+ γg(ω)v

(∑S

s=1
psnΩs(ω)yΩs(ω)

)
, (42)
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where (39) follows from the definition of I(.), (40) results from T (.) ≥ 0, (41) follows

from the definition of nT,Ps (.), yT,Ps (.), and (42) holds because of the definition of I(.)

and P, T (.) implements P, IΩ(.), nΩ(.), yΩ(.).

Thus, in both cases, (nΩ(ω), yΩs(ω)) is an optimal choice of type ω policyholders

with the above-defined umbrella policy, and with the same indemnity as with the fee-

for-service policy T (.), P , with I(mΩ(ω)) = IΩ(ω), which shows that P, I(.) implements

P, IΩ(.),mΩ(.).

Proof of Lemma 2

Similar to Lemma 1, with straightforward adaptation.

Proof of Lemma 3

We now have

V (x, x̃) = U
(
w − P + Î(x̃)−m(x̃)), h0 − γx(1− v(m(x̃))

)
.

A straightforward adaptation of the proof of Lemma 1 shows that (11) is a necessary

condition for incentive compatibility. (11) gives

∂V (x, x̃)

∂x̃
= γv′(m(x̃))m′(x̃)U ′H(R(x̃), H(x, x̃)) [x− x̃A(x, x̃)] ,

where

H(x, x̃) ≡ h0 − γx(1− v(m(x̃)), H(x̃, x̃) ≡ H(x̃),

A(x, x̃) ≡ U ′R(R(x̃), H(x, x̃))U ′H(R(x̃), H(x̃))

U ′R(R(x̃), H(x̃))U ′H(R(x̃), H(x, x̃))
.

Using U ′′H2 < 0 and U ′′RH > 0 gives A(x, x̃) > 1 if x̃ > x and A(x, x̃) < 1 if x̃ < x,

with A′x̃(x, x̃)|x̃=x > 0, and thus44

∂2V (x, x̃)

∂x̃2
|x̃=x = −γv′(m(x))m′(x)U ′H(R(x), H(x))[1 + A′x̃(x, x̃)|x̃=x ].

44On can check that A′x̃(x, x̃)|x̃=x > 0 if U ′HU
′′
RH−U ′RU ′′H2 > 0, which holds when U ′′RH > 0, U ′′H2 < 0

as postulated, but which is also compatible with U ′′RH < 0. Thus Lemma 3 is valid under more general

conditions than the ones we have considered in Section 4.
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Thus incentive compatibility gives (12). Conversely, assume that (11) and (12) hold.

We have

∂V (x, x̃)

∂x̃
≤ γv′(m(x̃))m′(x̃)U ′H(R(x̃), H(x, x̃))(x− x̃) < 0 if x̃ > x,

∂V (x, x̃)

∂x̃
≥ γv′(m(x̃))m′(x̃)U ′H(R(x̃), H(x, x̃))(x− x̃) > 0 if x̃ < x,

which implies incentive compatibility.

Proof of Proposition 5

The notations of costate variables and Lagrange multipliers are the same as in the

proof of Proposition 1. Observe first that Steps 1-4 of this proof remain valid, with an

unchanged definition of ϕ(x), just replacing (31) by

ϕ′(x) = [λ(1 + σ)f(x)− δ(x)]

[
1− γxv′(m(x))

u′(R(x))

]
− γµ1(x)

v′(m(x))

u′(R(x))
. (43)

and λ by λ(1 + σ) in (27).

Suppose that Î ′(x) > 0 if x < ε, with ε > 0. Hence Î(x) > 0 (and thus δ(x) = 0)

for all x > 0. Using (6) gives

h(x) > 0, (44)

1− γxv′(m(x))

u′(R(x))
> 0, (45)

if x < ε. (44) implies ϕ(x) = ϕ′(x) = 0 if x < ε. Furthermore, using (27) (in which λ

is replaced by λ(1 + σ)), (30) and µ1(a) = 0 yields

µ1(0) = −
∫ a

x

µ′1(x)dx =

∫ a

0

δ(x)dx− λσ = −λσ < 0,

and thus µ1(x) < 0 for x small enough. (43) and (45) then yields ϕ′(x) > 0, hence a

contradiction. Since we know from Step 4 that Î(x) is non-decreasing, we deduce that

there exists d > 0 such that Î(x) = 0 if x ≤ d and Î(x) > 0 if x > d.

The simulated trajectories of µ1(x) and µ2(x) are illustrated in Figure 9 in the case

of an exponential distribution function, with σ = 0.1 and with the same calibration
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as in Section 3.4. We have µ1(x) = µ2(x) = 0 when x ≤ d and µ1(x) > 0, µ2(x) < 0

when x > d, with d ' 0.41.

The characterization of the indemnity schedule I(m) is derived in the same way as

in Proposition 3, with D = m(d).45

Figure 10

Proof of Lemma 4

Let Î(x), x ∈ [0, x∗], P and c∗ be given, with I∗ = Î(x∗),m∗ = m(x∗) and I∗ ≤ m∗.

Consider the subproblem in which {Î(x),m(x), g(x), h(x), x ∈ [x∗, a]} maximizes∫ a

x∗

{
u(w − P + Î(x)−m(x)) + h0 − γx[1− v(m(x))]

}
f(x)dx, (46)

subject to (7) and (15)-(17).

Let µ1(x) and µ2(x) be co-state variables respectively for Î(x) and m(x) and let

η(x), and λ be Lagrange multipliers respectively for (16) and (17) in this subproblem.46

The Hamiltonian is written as

H = [u(R(x)) + γxv(m(x))]f(x) + [µ1(x)− η(x)]g(x)

+ [µ2(x) + η(x)]h(x)− λ[Î(x) + c]f(x),

and the optimality conditions are

µ1(x)− η(x) ≤ 0,= 0 if g(x) > 0, (47)

µ2(x) + η(x) = 0, (48)

µ′1(x) = [λ− u′(R(x))]f(x), (49)

µ′2(x) = [u′(R(x))− γxv′(m(x))]f(x) , (50)

45Note however, that we may have I ′(D+) = 0.
46We can straighforwardly check that (8) is not binding in this subproblem.
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for all x, with the transversality conditions µ1(a) = µ2(a) = 0, and η(x) ≥ 0 for all x

and η(x) = 0 if h(x) > g(x).

Let us consider x0 ∈ [x∗, a] such that g(x) > 0 if x is in a neighbourhood V of

x0. Suppose h(x) > g(x), and thus η(x) = 0 if x ∈ V. (47) gives µ1(x) = 0, and

thus µ′1(x) = 0 for all x ∈ V. Then (49) gives u′(R(x)) = λ, and thus R(x) =

w − P −m(x) + Î(x) is constant in V. This implies m′(x)− Î ′(x) = h(x)− g(x) = 0,

which contradicts h(x) > g(x). We deduce that h(x) = g(x) if x ∈ V. (47) and (48)

yield µ1(x) = −µ2(x) = η(x), and thus µ′1(x) = −µ′2(x), for all x ∈ V. (49) and (50)

then imply γxv′(m(x)) = λ for all x ∈ V, which gives m′(x) = −v′(m(x))/xv′′(m(x)).

Let x0, x1, x2 ∈ [x∗, a] such that x0 < x1 < x2 with g(x) = 0 if x ∈ [x0, x1] and

g(x) > 0 if x ∈ (x1, x2]. Let us show that we cannot have g(x) > 0 if x ∈ [x3, x0]

with x3 < x0. We have µ1(x) + µ2(x) ≤ 0 if x ∈ [x0, x1) and µ1(x) + µ2(x) = 0 if

x ∈ [x1, x2]. Let Ψ(x) ≡ [µ′1(x) + µ′2(x)]/f(x), with Ψ(x1) = 0 because µ1(x) + µ2(x)

reaches a local maximum at x = x1. Note that Ψ(x) is differentiable. Let x ∈

[x0, x1). If m′(x) = 0 (and thus R′(x) = 0), we have d[µ′1(x)/f(x)]/dx = 0 and

d[µ′2(x)/f(x)]/dx = −γv′(m(x1)) < 0, and thus Ψ′(x) < 0. If m′(x) > 0 (and thus

R′(x) < 0), we have η(x) = µ2(x) = µ′2(x) = 0 and d[µ′1(x)/f(x)] = −u′′(R(x))R′(x) <

0, and thus we still have Ψ′(x) < 0. Suppose g(x) > 0 if x ∈ [x3, x0] with x3 < x0. In

that case we would have µ1(x) + µ2(x) = 0 if x ∈ [x3, x0], and since µ1(x) + µ2(x) ≤ 0

if x ∈ [x0, x1), we would have Ψ(x0) = 0. This contradicts Ψ(x1) = 0,Ψ′(x) < 0 if

x ∈ [x0, x1).

Suppose there are x0, x1, x2 ∈ [x∗, a] such that x0 < x1 < x2 with g(x) > 0 if

x ∈ [x0, x1] and g(x) = 0 if x ∈ (x1, x2]. In that case µ1(x) + µ2(x) = 0 if x ∈ [x0, x1]

and µ1(x) + µ2(x) ≤ 0 if x ∈ [x1, x2]. Since µ1(a) + µ2(a) = 0 and µ1(x) and µ2(x) are

continuous, we may choose x2 such that µ1(x2) + µ2(x2) = 0. The same calculation as

above implies Ψ(x1) = 0, Ψ′(x) < 0 if x ∈ [x1, x2] and thus Ψ(x) < 0 if x ∈ [x1, x2],

which contradicts µ1(x2) + µ2(x2) = 0.

Overall, we deduce that there exists x̂ ∈ [x∗, a] such that Î ′(x) = 0 if x ∈ [x∗, x̂]
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and Î ′(x) = m′(x) > 0 if x ∈ [x̂, a]. The same reasoning - replacing Ψ(x) by Φ(x) ≡

µ′2(x)/f(x) - shows that there exists x̃ ∈ [x∗, x̂] such that m′(x) = 0, and thus m(x) =

m∗, if x ∈ [x∗, x̃] and m′(x) > 0 if x ∈ [x̃, x̂]. When m′(x) > 0, we have η(x) =

µ2(x) = 0, and thus µ′2(x) ≡ 0 if x ∈ [x̃, x̂], which gives u′(w − P − m(x) + I∗) =

γxv′(m(x)), and thus m′(x) ≡ −γv′(m(x))/[γxv′′(m(x)) + u′′(w − P − m(x) + I∗)].

When m′(x) = 0, we have Φ′(x) < 0 if [x∗, x̃) and Φ′(x̃) = 0, and thus x̃ is given by

u′(w − P −m∗ + I∗) = γx̃v′(m∗) if u′(w − P −m∗ + I∗) > γx∗v′(m∗), and x̃ = x∗ if

u′(w − P −m∗ + I∗) = γx∗v′(m∗).

If x∗ < x̂, then replacing m∗ by m̂ ≡ m(x̂) > m∗ implements the same allocation

with lower audit costs. Indeed, m(x) is an optimal choice of type x individuals if

x > x̂, because such individuals would prefer choosing m̂ rather than any m ∈ [0, m̂),

and furthermore, for such individuals, there is full coverage at the margin in (m̂,m(x)]

and they cannot choose expenses larger than m(x). In addition, the expected audit

cost decreases from c[1 − F (x∗)] to c[1 − F (x̂)] when m̂ is substituted for m∗. Thus,

an optimal allocation is necessarily such that x∗ = x̂.

Proof of Proposition 6

Let µ1(x) and µ2(x) be costate variables respectively for Î(x) andm(x) and let δ(x)

and λ be Lagrange multipliers respectively for (9) and (21). The Hamiltonian is written

as in the proof of Proposition 1, and the optimality conditions (26), (27) and (28) still

hold. We also have δ(x) ≥ 0 and δ(x) = 0 if Î(x) > 0, and µ1(x∗) + µ2(x∗) = 0 from

the characterization of the optimal continuation allocation. The optimality conditions
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on m∗, I∗, x∗, P and A are written as

V ′1 − µ2(x∗) = 0, (51)

V ′2 − µ1(x∗) = 0, (52)

V ′3 + {u(R∗) + h0 − γx∗[1− v(m∗)]}f(x∗)

−µ1(x∗)
γx∗v′(m∗)

u′(R∗)
− [λ− δ(x∗)]I∗ ≤ 0,= 0 if x∗ > 0, (53)

V ′4 −
∫ x∗

0

[
u′(R(x))f(x) + µ1(x)h(x)γx

v′(m(x))u′′(R(x))

u′(R(x))2

]
dx = 0, (54)

V ′5 + λ = 0, (55)

respectively, where V ′1 , V
′

2 , ... denote the partial derivatives of V (m∗, I∗, x∗, P, A) and

R∗ ≡ R(x∗) = w − P −m∗ + I∗. Define ϕ(x) for all x ∈ [0, x∗] by (28) as in the proof

of Proposition 1.

Step 1: m(x) > 0 for all x > 0.

Identical to Step 1 in the proof of Proposition 1.

Step 2: µ1(x) is continuous in [0, x∗] with µ1(x) = 0 for all x ∈ [0, x∗] such that

Î(x) = 0.

Identical to Step 2 in the proof of Proposition 1.

Step 3: µ1(x) ≥ 0 for all x ∈ [0, x∗] with µ1(x∗) > 0.

We know from Lemma 4 that R(x) = w − P −m∗ + I∗ and

m(x) = m∗ +

∫ x

x∗

v′(m(t))

tv′′(m(t))
dt,

for all x ∈ [x∗, a]. Thus,

V ′2 = u′(w − P −m∗ + I∗)[1− F (x∗)],

and (53) gives µ1(x∗) > 0. The remaining part of Step 3 is the same as in the proof of

Proposition 1.

Step 4: Î(x) > 0 for all x ∈ (0, x∗].

52



Identical to Steps 4 and 5 in the proof of Proposition 1.

Step 5: x∗ > 0.

We have

V ′3 = −{u(R∗) + h0 − γx∗[1− v(m∗)] + λ(I∗ + c)}f(x∗),

from the definition of V (.). Thus (53) and δ(x∗) = 0 give

λcf(x∗)− µ1(x∗)
γx∗v′(m∗)

u′(R∗)
≤ 0,= 0 if x∗ > 0,

which implies x∗ > 0.

Step 6: There is x ∈ (0, x∗] such that

Î ′(x) > 0, h(x) = m′(x) > 0 if 0 < x < x,

Î(x) = Î(x),m(x) = m(x), h(x) = 0 if x < x ≤ x∗,

Î ′(0) = 0, Î ′(x) = 0 if x = a and Î ′(x) > 0 if x < x∗.

Identical to the proof of Proposition 2.

Finally, µ1(x∗) > 0 shows that there is an upward discontinuity in m(x) and Î(x)

at x = x∗.

Proof of Proposition 7

Using x∗ > 0 and m′(x) > 0 if x ∈ (0, x) gives m∗ > 0. The remaining part of the

Proposition is a straighforward adaptation of Proposition 3.

Proof of Proposition 8

The Proposition follows from a straightforward adaptation of the proof of Propo-

sition 5.
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Figure 1 

Uniform distribution – No bunching 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

Exponential distribution - Bunching 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

Uniform distribution 

Case where the background risk creates bunching 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 

Non-separable utility  –  Exponential distribution 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 

Exponential distribution - A deductible is optimal under loading 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6 

Exponential distribution: Auditing without loading 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 

Dependency between threshold x* and audit cost c 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 

Exponential distribution - Loading and auditing 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 

 Trajectories of co-state variables 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10 

Co-state variables under loading 
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