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Abstract

This paper provides empirical evidence on the importance of pro-
duction networks configuration in accelerating industry-specific per-
turbations. Recent theoretical literature has brought back a classi-
cal question: can industry specific perturbations result into aggregate
fluctuations? According to this literature, whether industry-specific
perturbations are able to persist and to reach the aggregate economy
depends on the capacity of inter-industrial diffusion mechanism to am-
plify such perturbations. Empirical studies aiming at validating this
hypothesis have focused on exploring the origins of aggregate output
variance, without reaching a consensus. In this study, we investigate
whether the strength of inter-industrial diffusion mechanism depends
on the organization of production networks. We address this question
by approximating the inter-industrial diffusion process through a mea-
sure of industry-industry co-movement. Based on the cross-country
World Input-Output Database, we characterize the topology of pro-
duction networks through a set of indicators for 40 countries and for
the period 1995-2009. Our results suggest that the diffusion mechanism
is stronger in more asymmetric production networks.
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1 INTRODUCTION

The configuration of inter-industrial markets, called production networks,
might play a key role in amplifying and accelerating micro-economic shocks.
According to recent propositions, whether some economies exhibit micro-to-
macro events more often than others depend on how heterogeneous is the
distribution of industries’ influence within production networks. The aim of
this paper is to test empirically these recent theoretical propositions.

This paper follows a recent line of research that brought back a classical
debate to the macroeconomic arena: the possibility that aggregate fluctu-
ations may result from micro-economic shocks. This literature claims that
macro-economic swings may be induced from perturbations suffered by non-
aggregated entities such as sectors and firms. This debate dates back (at
least) to Lucas (1977), which states that industries or firms are too granular
to influence aggregate activity. According to this author, specific pertur-
bations experienced by micro-economic entities might not be perceptible at
aggregate scale since their effects would tend to average out. This is known
as the diversification argument. Since then, several theoretical and empir-
ical works has been developed with the aim of evaluating the pertinence
of Lucas’ argument, and more recently, some propositions highlight that
the occurrence of micro-to-macro events cannot be completely disregarded.
Rather, production networks might play a central role in the persistence and
amplification of idiosyncratic perturbations (Gabaix (2011), Acemoglu et al
(2012), Carvalho (2014)).

This paper contributes to this literature by studying the contagion mech-
anism within production networks. This mechanism seems to be relevant,
since a non-negligeable fraction of aggregate volatility in most advanced
economies is explained by industry covariance. Figure 1 presents a decom-
position of aggregate volatility for the period 1995-2009 and for 38 most
advanced economies.1 It shows that in most cases, interindustrial comove-
ment remains the main source of aggregate volatility by explaining at least
50 percent of aggregate volatility. Thus, whatever is affecting aggregate
volatility, the inter-industry channel may be key in diffusing, and perhaps,
in accelerating shocks. This paper shed light on how the share of indus-
try covariance on aggregate volatility may be due to the very structure of
production networks.

In particular, we are interested in testing empirically recent theoretical
propositions presented by Acemoglu et al (2012), relating the topology of
production networks to the capacity of industries to induce aggregate fluc-
tuations. According to these claims, theoretically, economies having more
asymmetric production networks (i.e. those in which the influence of in-
put suppliers is strongly heterogeneous) would be more likely to experience

1See more details in the Appendix A.
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Figure 1: Share of Aggregate Volatility due to Industry Comovement (1995-
2009). Figures represent estimates of the share of industry covariance on
aggregate volatility. The latter is measured through the variance of aggre-
gate value added growth rates. Source: Authors’ calculation based on World
Input-Output Database.

aggregate fluctuations triggered by industry-specific perturbations. This is
because, under highly asymmetric configurations, key input suppliers con-
centrate a degree of influence such that they may induce large and persistent
multipliers.

Do more asymmetric production networks exhibit stronger inter-industrial
propagation mechanisms? To what extent interindustry transmission chan-
nels depends on industry-specific or country-specific characteristics? We
treat these questions empirically by studying the short term dynamics of
aggregate production, and by approximating the production networks con-
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tagion mechanism through a measure of interindustrial comovement. By
focalizing on domestic industries; we evaluate whether or not the distribu-
tion of influence inside the network have an impact on industry synchroniza-
tion. By using the World Input-Output Database (WIOD), we implement
a cross-country analysis over the period 1995-2009.

Our results suggest that in average, production networks asymmetry has
a positive impact on the level of general synchronization among domestic
industries’ activity. We observe that indicators that are not traditionally
used in macroeconomics may be useful in the characterization of industrial
co-movement, such as network distance.

The remaining of the paper is organized as follows. In section 2, we
present a rephrase of the asymmetric economy notion that motivates this
paper. In Section 3, we present a theoretical framework to justify why
theoretical propositions presented by Acemoglu et al (2012) can be tested
empirically by studying the short term dynamics of aggregate production. In
Section 4, we introduce the indicators used in the empirical characterization
of production network diffusion mechanism. In section 5, we introduce the
regression techniques adopted to study the force of contagion of production
networks. Results are presented in this same section. Finally, in section 6 a
concluding discussion si presented.

2 THE ASYMMETRIC ECONOMY

Input requirements lead industries to develop interdependence. By changing
prices, or by suffering large disruptions on the delivery process, industries
are able to transmit perturbations downstream via vertical linkages. As
a result, in the absence of short run substitutes, highly specialized sectors
are more likely to endure perturbations suffered by main input suppliers.
The collection of these inter-industrial interactions is known as production
networks, and their configuration is thought to play an important role in the
diffusion of industry-specific disturbances.

More generally, throughout production networks, industries may develop
complex and unsuspected forms of interdependency. This is because their
interconnected nature allow idiosyncratic shocks to induce adjustments (di-
rectly and indirectly) at several scales through a network multiplier. New
insights in macro-economic literature suggest that aggregate fluctuations
may be a consequence of large network multipliers, which in turn depend
upon the organization of network linkages. In particular, it would depend
on the capacity of network interactions to amplify industry specific shocks.
When this amplification process is strong enough, perturbations originated
within production networks may propagates across the economy and poten-
tially induce aggregate perturbations. [Acemoglu et al (2012) and Carvalho
(2014)]
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Figure 2: The Extreme Case: A Star-like Topology

According to these propositions, large networks multipliers would be
more likely to take place in economies whose production networks configu-
ration approximates to star-like network. Figure 2 illustrates the topology
of these extreme configuration, which are characterized by having a cen-
tral input supplier to which the rest of industries are connected. Under
this hypothetical production network configuration, all non-central indus-
tries would be only indirectly connected to each other through a central
node, and the internal diffusion mechanism would have two main peculiar-
ities. Firstly, central supplier would be able to affect the global activity of
the network rapidly, and may be potentially the main source of volatility at
network scale. Secondly, this structure would imply the presence of a power-
ful channel by which idiosyncratic shocks taking place in the periphery may
propagate easily across the network. In latter case, indirect linkages would
allow non-central industries to potentially induce global fluctuations, and in-
crease the likelihood that network scale fluctuations arise from non-central
entities. In sum, the network multiplier obtained under Star Economy con-
figuration would be always higher than that observed under any other kind
of network configuration [Carvalho (2014)].

How close are modern economies from the hypothetical star-like config-
uration? and how investigating interindustry comovement may shed light
on the contagion mechanism within production networks ? In its seminal
work, Acemoglu et al (2012) demonstrates theoretically that the speed of
dissipation of industry specific shocks decreases as the economy get closer
to a star-like configuration; easing the propagation of idiosyncratic shocks,
and increasing their chances of attaining aggregate activity. In this paper,
we hold that whether network configuration effectively makes industry dis-
turbances more persistent, it would be reflected in most cases as higher
interindustry comovement. This is because as shocks propagate across the
network, vertical complementarities ensure that adjustments are made grad-
ually and at different scales, inducing synchronization among industrial ac-
tivity. Thus, were the configuration of production networks accelerate their
inner diffusion mechanism, it should also accelerate industry comovement.

In this paper, we investigate empirically how close are economies to the
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star-like configuration by studying industries’ centrality probability distribu-
tion. The more asymmetric the distribution of centrality within production
networks, the closer they are from the star-like configuration; and thus, the
stronger the internal propagation mechanism.2 We compute an indicator
of network asymmetry for 40 economies to study empirically whether this
characteristic helps understanding interindustry co-movement.

3 MODELING THE INTER-INDUSTRY PROP-
AGATION MECHANISM

In this section, we present a simplified version of a model firstly developed
by Long and Plosser (1983), and which is commonly used in the literature
to study the granular origin of aggregate business cycles. We take the core
of the inter-industry diffusion mechanism, and demonstrate that theoreti-
cal propositions highlighting the link between the organization of produc-
tion networks, and the force of contagion of industry-specific shocks, can be
tested by studying the short-term aggregate fluctuations.

Consider an economy composed by n industries, and whose the produc-
tion process of the ith industry is characterized by the following production
function:

Yi,t = ei,t

n∏
j

(Y ωij
j,t )α (1)

where Yj,t represents intermediate goods provided by industry j ε{1...n}
at time t, and where ωij ε(0, 1) denotes the level of specialization of industry
i on the technology provided by industry j. Under this framework, it is
also assumed that industry i ’s production is subjected to orthogonal and
identically distributed idiosyncratic technological shocks, denoted by ei,t.

Equation (1) characterizes the engines of production networks. Under
this setting, technological linkages allow industries to interact and to become
interdependent, by allowing idiosyncratic disturbances to be transmitted
downstream through the production chain. In what follows, we demon-
strate that under this framework, the organization of technological linkages
may condition the contagion mechanism of industry-specific perturbations.

Proposition 1: The capacity of industries to induce short-term spillovers
is determined by their level of network centrality, denoting how essential they
are within production networks.

2Centrality distribution is said asymmetrical when a handful of industries are strongly
central, whereas the rest of industries are weakly influential.
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To see this, let study the inter-industrial diffusion mechanism of short
term through the Variance-Covariance matrix of the system composed by
industrial production growth rates:

ΣY = [I− αW]−1 ΣZ [I− αW]−1(T )

where ΣY and ΣZ denote the variance-covariance matrix of the industry
production growth rates vector (Y) and the industry-specific shocks growth
rates vector (Z), respectively.3 Moreover, W is a squared matrix whose (i, j)
entries correspond to ωij . 4 It is worth noting that even if idiosyncratic
shocks are assumed orthogonal, industries are able to transfer idiosyncratic
shocks, and to induce network spillovers thanks to technological ties via the
term [I − αW]−1. This implies that the short term dynamics of industrial
production is subjected to the properties of production networks expressed
through the matrix W.

Let aggregate volatility be defined as the variance of the weighted sum
of industrial production growth rates (gyi) as follows:

σ2
Y = V ar(

n∑
i=1

wi · gyi)

where wi denotes the share of aggregate production that is produced by
industry i. Let wi = 1/n for ∀i, and by taking the structure characteriz-
ing industries’ production process proposed by equation (1), then aggregate
volatility equals:

σ2
Y = vT · ΣZ · v (2)

where v = 1/n · [I − αW T ]−1 · ~1 corresponds a to the influence vec-
tor highlighted by Acemoglu et al (2012) and Carvalho(2014). This is a
well-known notion on social network analysis, where v is called Eigenvector
centrality, and is used to identify more interconnected or influential network
members. In this context, the presence of this vector suggests that the in-
dustries’ capacity to generating short-run fluctuations depends on how well
interconnected they are within production networks. This result is parallel
to what was firstly proposed by Acemoglu et al (2012), where in a general
equilibrium framework, the capacity of industries to induce aggregate fluc-
tuations is proportional to v, their level of network influence.

3This equation is obtained by computing ΣX = E
“

[X − E(X)] · [X − E(X)]T
”

,

for X = {Y,Z} where Y T =
ˆ
gy1 gy2 · · · gyn

˜T
and ZT =ˆ

ge1 ge2 · · · gen
˜T

, such that gyi = ∂(log(Yi))/∂(t) and gei = ∂(log(ei))/∂(t).
4Matrix W corresponds to the transposed Input-Output tables. That is, W is such

that columns contain intermediate production of industry j, rows contain intermediate
consumption of industry i.
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Proposition 2: The organization of production networks conditions the
force of contagion of short-term spillovers. Higher levels of heterogeneity (or
asymmetry) in industry centrality are related to higher levels of short-term
fluctuations.

To illustrate this, we study aggregate volatility in (a) absence of inter-
industrial trade, and (b) in presence of technological linkages. In both cases,
let aggregate volatility be computed by using the first order approximation
of variance-covariance matrix of industrial production growth rates, ΣY =
[I + αW] ΣZ [I + αW]T .

(a) Without of Inter-Industrial Trade. Under this scenario, the matrix
containing the inter-industrial transactions, W, is empty. Since industry-
specific shocks are supposed orthogonal and identically distributed, aggre-
gate volatility equals:

σ2
Y =

1
n
· σ2

z

where σ2
z denotes the variance of idiosyncratic shocks growth rates, (ge).

In this case, idiosyncratic shocks are not transmitted among industries due
to the absence of technological ties. Therefore, there is no contagion effect,
and aggregate variance is simply the average of the variance idiosyncratic
shocks.

(b) With Inter-industrial Trade. In this case, industries are interdepen-
dent and idiosyncratic perturbations propagate downstream through pro-
duction chain. The variance-covariance matrix ΣY is therefore conditioned
by the organization of inter-industry linkages through the matrix W. Ag-
gregate volatility would be defined by:

σ2
Y =

1
n
· σ2

z

[
1 + µ

(
α,CV (d)2

) ]
(3)

where µ denotes a network multiplier, which in turn, is positively linked
to CV (d), the coefficient of variation of the first order outdegree centrality,
such that

CV (d) =
1
d

√√√√ 1
n− 1

n∑
i=1

(di − d)2

where di denotes the first order outdegree of the ith industry and d =
1
n

∑n
i=1 di. This result implies in presence of vertical linkages, aggregate

volatility is augmented by a network multiplier, that in turn, is stronger for
more asymmetric centrality distributions.
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Proposition 3: The acceleration of aggregate volatility induced by higher
levels of network asymmetry is mostly due to a reinforcement of Industry Co-
variance.

The network multiplier (µ) affecting aggregate volatility can be decom-
posed as function of Industry Variance and Industry Covariance. To see
this, let aggregate volatility be re-expressed as follows:

σ2
Y =

1
n
· σ2

z [1 + (1− τ) · µ(α,CV ) + τ · µ(α,CV )]

where µ(α,CV ) denotes the network multiplier introduced in equation
(3), and τ = σyy/µ(α,CV (d)) is the share of the network multiplier due
to Industry Covariance. The higher τ , the higher is the effect enhanced by
higher network asymmetry passing through Industry Covariance. By using
information from the World-Input Database, it turns out that for most ad-
vanced economies, this parameter τ in average 0.87. This result indicates
that most part of the acceleration effect induced over aggregate volatility -
and resulting from the organization of production networks, might be pass-
ing through the inter-industrial channel. Thus, the role played by the orga-
nization of production networks on aggregate fluctuations may be studied
empirically by exploring inter-industrial synchronization.

4 EMPIRICAL CHARACTERIZATION OF PRO-
DUCTION NETWORKS

This section introduces the indicators used in the empirical characterization
of industry comovement and its main drivers.

4.1 Industry Synchronization

We study the Industry covariance through a finer measure of synchroniza-
tion: the industry pairwise Pearson correlation. There are two reasons
justifying this procedure. Firstly, the pairwise correlation allows us to dif-
ferentiate negatively from positively synchronized industry couples. Ulti-
mately, stronger interindustry propagation channels would be expressed as
tighter synchronization, whether this is negative or positive. Moreover, us-
ing Pearson correlation instead of industry covariance allows us to work
with a free-units indicator, and yields a better measure of comovement.

Our variable of interest is then the industry pairwise Pearson correlation,
which is computed as follows:
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Figure 3: Empirical Distribution: Pairwise Industry Pearson Correlation.
Period: 1995-2009. Source: Authors’ calculation based on World Input-
Output Database.

ρjq =
σjq(wjt · gjt,wqt · gqt)√
σ2
j (wjt · gjt) · σ2

q (wqt · gqt)
(4)

where σjq denotes the observed covariance between value added growth
rates of industries j and q within the period 1995-2009. We implement our
analysis by using data from the World Input-Output Database, which pro-
vides time-series of harmonized Input-Output tables for 40 countries cover-
ing the period 1995-2011 based on official Socio-Economic and Environmen-
tal Accounts. In particular, industry value added growth rates are computed
from Input-Output tables available in a disaggregation basis of 35 industries
according to ISIC Rev.3 code. In our empirical analysis, ρjq is computed for
every pair of different domestic industries (i.e. j 6= q) and for 40 countries
available in the World Input Output Database. This yields a sample size
of 23800 industry couples (595 industry pairs by country). Figure 3 shows
the empirical distribution of our pairwise Pearson correlation indicator. We
observe that, in average, industry couples have a positive and moderate
level of synchronization. Moreover, we also observe that a non-negligible
proportion (30 percent) of total industry pairs in our sample have a neg-
ative co-variance. Later in this paper, we dedicate a section to study this
observation.

The theoretical framework presented above yields a frame of reference
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about the potential sources of parwirse comovement. From the aggregate
Variance-Covariance matrix, ΣY , it follows that the covariance between any
pair of industries i and j can be characterized as follows:

Cov(yi, yj) = σ2
zf (α, ωij , ωji, CV (d))

According to this expression, pairwise industry comovement might be
induced by tighter vertical linkages (ω) as well as higher level of network
asymmetry. The remaining of this section aims at giving details about the
empirical characterization of these potential sources of comovement.

4.2 Vertical Specialization

The first indicator is a measure of industry inter-dependency , denoted ωij
in the theoretical framework presented above. Its role is to characterize
the intensity of direct vertical linkages within production networks. This
indicator is computed as follows:

ωij =
InputDemandi,j∑n
i InputDemandi,j

(5)

where InputDemandi,j denotes the value of inputs supplied from j to i,
and

∑n
j InputDemandi,j is the total intermediary consumption of industry

i. The higher ωij , the higher the contribution of industry j ’s output on
total intermediate consumption of industry i. Alternatively, this measure
can be interpreted as the level of input specialization of industry i on inputs
produced by industry j. That is, if ωij = 1, it implies that industry j is the
only input supplier of industry i ; when ωij = 0, in contrast, industry i does
not require industry j to produce.

We use a second indicator allowing to compute vertical dependency in
a broader sense. In some cases, two industries may be weakly and directly
related within the network, while being strongly connected via indirect link-
ages. To control for this feature, we computed the technological proximity
for each pair of industries as follows:

Proxy = max{ωij , NetDist−1}

where NetDist denotes the network distance computed from the Floyd-
Marshall algorithm, which finds the shortest path linking two industries
within production networks. Since higher proximity may translate into ma-
jor feedback, industries being closer within the network might present higher
co-movement. We would expect Proxy to be related positively to pairwise
synchronization.
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Table 1: Network Complementarities

Industry (i) Industry (j)

Vertical Specialization (ωij) Average

Average
Standard

Min Max
Pairwise

Deviation Comovement

Agriculture Food & Beverages 33.9% 9.0% 18.9% 55.7% 5.8%
Construction Real Estate Activities 29.4% 20.2% 1.1% 81.9% 35.5%
Mining Coke & Petroleum 28.4% 27.8% 0.0% 90.7% 0.0%
Food & Beverages Hotels & Restaurants 27.6% 11.5% 1.2% 58.2% 26.3%
Metals Machinery 22.8% 9.0% 2.4% 38.3% 55.6%
Agriculture Wood & Cork 19.6% 12.8% 0.1% 47.6% 5.4%
Financial Intermediation Real Estate Activities 16.4% 11.2% 1.7% 40.5% 9.2%
Chemicals Rubber & Plastics 16.2% 12.9% 0.1% 45.9% 40.4%
Renting Of Machinery & Eq Other Services 15.9% 7.7% 1.7% 31.0% 36.0%
Wood & Cork Manufacturing 15.4% 9.7% 1.2% 43.4% 50.0%
Renting Of Machinery & Eq Public Admin 15.3% 7.3% 1.1% 29.1% -2.1%
Metals Transport Eq. 14.6% 7.4% 0.6% 46.6% 50.9%
Other Mineral Construction 13.4% 6.6% 5.5% 31.7% 59.1%
Mining Electricity & Gas & Water 13.2% 12.7% 0.0% 41.8% 27.0%
Metals Electrical & Optical Eq. 12.5% 7.6% 0.3% 33.3% 52.8%
Electricity & Gas & Water Education 12.3% 9.4% 0.8% 47.2% 10.3%
Coke & Petroleum Other Inland Transport 12.2% 11.4% 0.0% 43.4% 4.1%
Renting Of Machinery & Eq Education 11.7% 6.9% 1.3% 26.7% 1.5%
Mining Other Mineral 11.1% 7.8% 0.4% 45.6% 14.1%
Other Inland Transport Other Transport Activities 10.9% 9.3% 1.2% 37.3% 37.4%
Coke & Petroleum Other Air Transport 10.8% 9.3% 0.0% 42.0% 11.2%
Metals Manufacturing 10.7% 6.1% 0.8% 26.1% 47.6%
Renting Of Machinery & Eq Health & Social Work 10.4% 5.8% 0.2% 24.0% 12.7%
Metals Construction 10.2% 5.5% 0.7% 28.0% 46.2%

Author’s calculations. Source: WIOD.

In Table 1 we present an overview of results obtained after computing
the vertical specialization indicator. By exploring intermediary consump-
tion profile of industries, we identify the 25 most specialized industries, i.e.
those industries for which production relies the most on direct input suppli-
ers. Our results indicate that, in average, the most specialized industry is
Food Beverages, whose 33,9 percent of total intermediary consumption is
provided by Agriculture, followed by Real State Activities whose 29 percent
of total intermediary consumption relies on Construction. Table 1 also al-
lows us to infer indirect relationships as well. For instance, at the bottom
of first column, we observe that Metals is an important input supplier of
Construction, which in turn is an important input supplier of Real State
Activities. From this observation, we deduce that Metals and Real State
Activities are indirectly related within production networks, through a 2nd
order relationship.

4.3 Network Asymmetry

Our main indicator is the Asymmetry Index. Its purpose is to characterize
how close are economies from the star-like configuration, and to assess the
potential of interindustry channel to accelerate industry-specific perturba-
tions. In a broad sense, the Asymmetry notion highlights how heterogeneous
is the distribution of influence among industries within the network. In the
context of this paper, for instance, a network is asymmetric when a large pro-
portion of total network intermediate consumption is satisfied by a handful
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of industries.5 This characteristic is a well known notion in networks theory,
and its computation consists on fitting the empirical probability distribution
of a network centrality notion, to the most adapted theoretical probability
law. In order to compute this characteristic, we firstly define the notions of
network centrality.

Network Centrality

In the context of this paper, Centrality indicators attributes higher levels
of influence to those industries on which production networks relies the most
directly and indirectly, at least in the short run. The simplest version is the
first order Outdegree:

d
(1)
i =

n∑
j=1

ωji (6)

where ωij denotes vertical specialization indicator defined above. Out-
degree centrality is defined as the total direct input contributions made by
industry i to the network. It is possible to thing of d(1)

i as an indicator of
how necessary is industry i ’s technology in i ’s direct neighbors production
process.6 We pay particular attention to more extended versions of Outde-
gree centrality. In particular, we modify the Outdegree notion by considering
how well connected are direct neighbors. Ultimately, industries possessing
strongly connected direct neighbors are more likely to transfer shocks down-
stream through the production chain, and to induce comovement. This is
reflected by the second-order Outdegree :

d
(2)
i =

n∑
j=1

ωji · d(1)
j (7)

where ωij denotes the measure of vertical specialization defined above
and d

(1)
j denotes the first-order outdegree of the j th neighbor. According

to this indicator, industry i might have a higher level of influence when its
direct neighbors are themselves important input suppliers.

Following these notions, we focus on a more comprehensive measure of
centrality that defines network influence as the capacity of industries to
transfer shocks k steps downstream through the production chain. This

5This is simplistic definition, since as we will see later in this paper, stronger differences
in network influence are observed when studying indirect linkages.

6When two industries interact directly within inter-industrial markets, we will denote
them as first order neighbors, or simply direct neighbors. More generally, when the min-
imum quantity of transactions relating (directly or indirectly) a couple of industries is
equal to k, we will refer to them as k-order neighbors; and the set of k-order neighbors of
industries will be denoted as the k-order neighborhood.
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Coke, Refined Petroleum And Nuclear Fuel
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First Order Second Order Asymptotic

Figure 4: Outdegree Centrality : Several Orders. The centrality indicators
were computed by using input-output tables from the WIOD, which are
available at a disaggregation level of 35 industries and for 40 countries. The
level of centrality of each industry in the figure was computed in two stages.
Firstly, we computed the average centrality level of each industry for the
period 1995-2011. Secondly, we computed the average level of each type of
industry across the 40 countries. Authors’ calculation. Source: WIOD.

can be obtained through a generalization of Outdegree, called the k-order
Outdegree:

d
(k)
i =

n∑
j=1

ωji · dk−1
j (8)

with d
(0)
j = 1

where d(k−1)
j denotes the k-1 order Outdegree of the j th neighbor. This

indicator characterize network centrality by considering the potential influ-
ence exerted by industry i over its first k neighborhoods.

Who is who in production networks? Figure 4 presents a list of 35
industries contained in the WIOD in descending order according to their
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first-order Outdegree, and provides information on their 2th and 30th order
Outdegree. In average, the top 5 list of general purpose industries among the
40 economies considered in our data is conformed by : (1) Renting of Ma-
chinery and Equipment, (2) Wholesale Trade, (3) Financial Intermediation,
(4) Electricity, Gas and Water Supply and (5) Retail Trade. These indus-
tries can be though as key direct input suppliers within production networks.
We observe that Renting of Machinery and Equipment and Financial Inter-
mediation present considerable gains on centrality when considering their
indirect level of influence within production networks. This characteristic
reflects the fact that these industries not only provide inputs directly to a
large part of the network, but also they provide inputs to important input
suppliers. In contrast, among the top 5 more central industries, Wholesale
Trade and Retail Trade industries exhibit lower levels of influence when con-
sidering indirect influence. This suggests that, even if these industries are
key direct input suppliers, their neighbors are not, limiting their capacity for
generate large network multipliers.

Asymmetry Indicators

In the theoretical framework presented above, network asymmetry ap-

15



pears in the model through the coefficient of variation of first order Out-
degree centrality, CV (d). In estimations, we study network asymmetry not
only through the CV (d) coefficient, but also through an Asymmetry In-
dex. The latter is constructed by fitting the empirical probability distribu-
tion of k-order Outdegree to a Weibull propability law, which seems be the
most adapted for data provided by World Input-Output Database (WIOD).7

Then, we construct an asymmetry index which is simply defined as the in-
verse of the shape parameter (γ) of Weibull distribution:

Asymmetry = 1/γ̂ (9)

where γ̂ represent the (estimated) shape parameter of the Weibull dis-
tribution, s.t. P (X < x) = 1 − exp{(x/λ)γ} for x ∼ Weibull(λ, γ). Lower
values of γ are associated to more skewed distributions. In particular, a ran-
dom variable generated by a Weibull probability law will present a heavy-
tail behavior only when γ is less than 1. Moreover, when γ < 1, there exist
a monotonic and negative relationship between γ and CV (d). Therefore;
strongly asymmetrical production networks should be characterized by a
empirical CDF having a low shape parameter, eventually lower that 1.

Empirical Issues

We observed that the level of disaggregation of IO tables have an influ-
ence on the metrics used in the study of production networks. Particularly,
highly aggregated data tends to show more homogenous centrality distri-
butions among industries, which subsequently affects indicators such as the
Asymmetry Index. We also observe that outdegree distribution become less
homogenous at higher-order outdegree. In order to deal with the homogene-
ity of industries induced by the level of disaggregation, we will consider the
30th outdegree to compute Asymmetry index, since is considered to be more
accurate in reflecting the true centrality distribution of domestic industries.
In the remainder of this work, this is simply denoted as Asymmetry.

Figure 5 illustrates the empirical CDF associated to the 30-th order Out-
degree centrality. Empirical CDF is computed for 40 countries contained in
the WIOD, but highlighted graphically only for the least asymmetric (China)
and the most asymmetric production network in the sample (Luxembourg).
In the case of China, for instance, Figure 1 suggests that roughly 50 percent

7Acemoglu et al (2012, 2013) and Carvalho (2011, 2014) show that for the United
States, the tail of industries’ centrality CDF approximates a power law. However, when
using IO tables made available by most statistical offices, it is not possible to characterize
production networks’ centrality distribution through this particular distribution. This
difference is mainly due to the level of disaggregation of IO tables used in the calculation
of centrality indicators. The authors use data having a disaggregation level of nearly 400
industries, in our case; however, IO tables go until 35 industries.
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Table 2: Descriptive Statistics

Variable Mean Std. Dev. Min Max

Asymmetry 1.340 0.306 0.876 2.302
Land Size 0.110 0.224 0.000 1.000
Openness 0.858 0.483 0.232 2.754
Economy Size 0.081 0.164 0.001 1.000
A-Centrality 0.967 0.903 0.000 7.582
D-Centrality 1.165 1.451 0.000 11.194
A-Proximity 0.041 0.033 0.000 0.464
D-Proximity 0.040 0.053 0.000 0.887
A-Vertical 0.025 0.035 0.000 0.497
A-Vertical2 0.002 0.007 0.000 0.247
D-Vertical 0.035 0.057 0.000 0.994
A-Industry Size 0.029 0.019 0.000 0.171
D-Industry Size 0.029 0.028 0.000 0.241

Author’s calculations. Sorce: WIOD

of industries have a level of centrality inferieur to 1, in Luxumbourg; in con-
trast, this percentage is about 80 percent. This implies that in Luxembourg,
network centrality is relatively more concentrated than in China.

4.4 Additional Controls

We incorporate in our empirical analysis other potential sources of interindus-
try comovement. For instance, we analyze whether the fact of belonging to
different sectors –Primary, Secondary or Tertiary– may determine industry
comovement. We also incorporate a dummy indicating whether industry
couples belong to one of Eurozone economies (denoted by EURO). Our esti-
mations also include a measure of openness to trade (denoted by Openness),
a variable controlling for the size of geographic territory (denoted LandSize),
and the relative size of the economy (denoted EconomySize). More details
are presented in the Annex.

5 EXPLORING THE SOURCES OF INDUSTRY
SYNCHRONIZATION

Our empirical analysis is implemented in two stages. The first and main part
consists on studying the sources of pairwise industry synchronization (ρc)
and by implementing a Beta regression. The second part of the empirical
analysis aims at further our understanding of industry comovement. We
classify industry couples according to the degree and sign of comovement,
and use a Multinomial Logit to identify what lead industry couples to exhibit
a particular pattern of comovement.
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5.1 First Stage: Beta Regression

Our first and main objective is to study whether the configuration of pro-
duction networks determine interindustry synchronization, which is approx-
imated here via ρc. This indicator has the particularity that is bounded to
(-1,1) interval. This implies that classical techniques of regression cannot
be applied to study this variable, since non-linear behavior may be induced
over regressors. We deal with this limitation by implementing Beta Regres-
sion. This approach allows the study of variables that are bounded to (0,1)
interval, and more generally, allows the study of any bounded variable not
defined in the interval (0,1) after applying a transformation. In our case, we
transform industry pairwise correlation so that it is defined within the (0,1)
interval as follows:

ρ̂c =
ρc + 1

2
(10)

where index c ε 23,800 denotes industry couples contained in our sample.
Thus, we study the force of interindustry comovement through the trans-
formed pairwise correlation, ρ̂c, and by implementing a Beta regression. The
latter is based on maximum likelihood estimation according to the following
specification:

log(
θX

1− θX
) = δi + δj + δl +Xβ + Zλ+ εc (11)

where θX denotes E(ρ̂c/X) such that ρ̂c is assumed to follow a Beta(θX)
distribution.8 Variable X denotes a vector of industry pair-wise character-
istics, and Z denotes a vector of control variables specified at country level.
Moreover, we include fixed effects by industry (δi, δj) and by country (δl).

In particular, beta regression allow us to study our variable of interest
(ρ̂c) by studying its conditional mean parameter (θX). However, as im-
plied by Equation (11) , β̂ assesses the linear relationship between X and
log( θX

1−θX ), implying that Beta regression estimation does not yield a direct
estimator of the relationship between E(ρ̂c/X) and explanatory variables.
Therefore, in order to get a estimator of the marginal relationship of the
form ∂E(ρ̂/X)

/
∂X, we compute the Average Marginal Effects (AME).9 In

particular, when presenting and interpreting results for beta regression, we
will mainly focus on the average marginal effects (AME) presented in table
(4). Alternatively, we present estimates of Equation (11) in table (3) to
show that estimations are robust in most cases.

8This specification implies that θ and the vector of explanatory variables, X, are related

by a Logit link function, that is, θ = eXβ

1+eXβ
. See more details in the Annex.

9See more details in the Annex.
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5.2 Results

Our main objective is to study whether the diffusion mechanism within pro-
duction networks is reinforced in more asymmetrical configurations. This
claim is studied through the Asymmetry Index, which yields a measure of
how heterogeneous is the distribution of centrality among domestic indus-
tries. We would expect that more asymmetric economies posses more power-
ful diffusion mechanisms, and thus, stronger interindustry comovement. Our
results indicate that higher levels of network asymmetry are associated to
higher levels of industry synchronization: an increase in Asymmetry by one
standard deviation (i.e. 0.306) would lead to an increase of about 16 percent
on the level of industry synchronization.10 This effect is robust and statis-
tically significant at 1 percent across all our specifications (see table (3)).
This indicates that on average, industries’ activity co-moves more closely
in economies having more asymmetrical production networks. We consider
that this is evidence of a general reinforcement on the diffusion channels by
which industry-specific shocks propagate throughout production networks.
Moreover, such reinforcement is a necessary condition for production net-
works to be at the core of aggregate fluctuations, as proposed by Acemoglu
et al (2012).

Comovement is also induced by industry specific characteristics. In
particular, the intensity of network interactions is related to positive co-
movement: an increase in the average vertical specialization (denoted by
A− V ertical) by one standard deviation (i.e. 0.035) have a positive impact
on the synchronization of industries’ activity of about 3 percent. This is
in line with what is expected from a production networks perspective: the
higher the average direct network interdependency, the higher the synchro-
nization between two industries.

Interestingly enough, other control variables have the expected sign and
may be useful in the characterization of industry synchronization. At in-
dustry level, for instance, we observe that the sector is a good predictor of
synchronization. Our results suggest that couples whose both industries are
classified as either Secondary or Tertiary exhibit a level of synchronization
at least 30 percent higher than couples formed by two Primary industries.
We also find that industry couples from Eurozone economies exhibit higher
levels of industry synchronization of about 21 percent higher than the av-
erage. This is in line with literature suggesting that economic activity is

10This effect is obtained by re-transforming bρc ε (0,1) into ρc ε (-1,1), and by computing:

AME(ρc) =
∂E(ρc/X)

∂Xk
=
∂E(ρc/X)

∂E( bρc/X)
· ∂E( bρc/X)

∂Xk
= 2 · ∂

cθX
∂Xk

= 2 ·AME( bρc)
where AME( bρc) represents the Marginal Effect induced by one unit change on the k-th

variable over the transformed correlation bρc.
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Table 3: Beta Reg: Explaining industry pairwise comovement 1995-2009
Estimated Equation: log( θX

1−θX
) = δiι+ δjι+ δlι+Xβ + Zλ+ εc

where θX = E( bρc/Xk) such that bρc ∼ Beta(θX)

(1) (2) (3) (4) (5) (6)

Asymmetry 1.225∗∗∗ 1.225∗∗∗ 1.090∗∗∗ 1.176∗∗∗ 1.156∗∗∗

(0.0141) (0.0141) (0.0109) (0.0115) (0.0172)

CV (d) 0.832∗∗∗

(0.0114)

EURO 0.544∗∗∗ 0.657∗∗∗ 0.473∗∗∗ 0.467∗∗∗ 0.393∗∗∗

(0.00292) (0.00390) (0.00303) (0.00411) (0.00481)

LandSize 0.255∗∗∗ -2.225∗∗∗ -2.213∗∗∗ -2.483∗∗∗

(0.00775) (0.0147) (0.0203) (0.0226)

Openness -1.364∗∗∗ -1.348∗∗∗ -1.273∗∗∗

(0.0100) (0.0161) (0.0146)

EconomySize 0.00488 0.0572∗∗∗

(0.00366) (0.00338)

Secondary × Secondary 0.690∗∗∗ 0.690∗∗∗ 0.690∗∗∗ 0.690∗∗∗ 0.690∗∗∗ 0.708∗∗∗

(0.139) (0.139) (0.139) (0.139) (0.139) (0.139)

Tertiary × Tertiary 0.877∗∗∗ 0.877∗∗∗ 0.877∗∗∗ 0.877∗∗∗ 0.877∗∗∗ 0.852∗∗∗

(0.111) (0.111) (0.111) (0.111) (0.111) (0.109)

Secondary × Tertiary 0.230 0.230 0.230 0.230 0.230 0.388∗∗∗

(0.184) (0.184) (0.184) (0.184) (0.184) (0.120)

Primary × Secondary -0.000320 -0.000320 -0.000320 -0.000320 -0.000320 0.0128
(0.102) (0.102) (0.102) (0.102) (0.102) (0.103)

Primary × Tertiary -0.157 -0.157 -0.157 -0.157 -0.157 -0.00134
(0.179) (0.179) (0.179) (0.179) (0.179) (0.0924)

A− V ertical 1.854∗∗∗ 1.854∗∗∗ 1.854∗∗∗ 1.854∗∗∗ 1.854∗∗∗

(0.668) (0.668) (0.668) (0.668) (0.668)

(A− V ertical)2 -4.865∗∗∗ -4.865∗∗∗ -4.865∗∗∗ -4.865∗∗∗ -4.865∗∗∗

(1.761) (1.761) (1.761) (1.761) (1.761)

D − V ertical -0.315 -0.315 -0.315 -0.315 -0.315
(0.242) (0.242) (0.242) (0.242) (0.242)

A− Proximity 0.450
(0.613)

(A− Proximity)2 -1.271
(1.798)

A− IndSize -1.367 -1.367 -1.367 -1.367 -1.367 -1.232
(1.423) (1.423) (1.423) (1.423) (1.423) (1.444)

D − IndSize 0.522 0.522 0.522 0.522 0.522 0.462
(0.366) (0.366) (0.366) (0.366) (0.366) (0.364)

N 22340 22340 22340 22340 22340 22273
δi, δj and δl YES YES YES YES YES YES

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Note: All regressions include dummy variables at country level and clustered standard
errors by country.
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Table 4: Average Marginal Effects (AME) of transformed (ρ̂c) and non trans-
formed pearson correlation (ρc). OLS estimations are obtained by regressing
transformed ρ̂c.

Beta Regression OLS

AME( bρc) AME(ρc)*σX β β*σX

Asymmetry 0.268∗∗∗ 0.164 0.244∗∗∗ 0.149
(0.00353) (0.00141)

EURO 0.108∗∗∗ 0.216 0.106∗∗∗ 0.212
(0.000911) (0.000611)

LandSize -0.513∗∗∗ -0.229 -0.501∗∗∗ -0.224
(0.00396) (0.00124)

Openness -0.313∗∗∗ -0.302 -0.296∗∗∗ -0.285
(0.00329) (0.000974)

EconomySize 0.00113 0.00880∗∗∗

(0.000850) (0.000451)

Secondary × Secondary 0.160∗∗∗ 0.32 0.158∗∗∗ 0.316
(0.0319) (0.0331)

Tertiary × Tertiary 0.203∗∗∗ 0.406 0.211∗∗∗ 0.422
(0.0253) (0.0249)

A− V ertical 0.430∗∗∗ 0.03 0.382∗∗ 0.026
(0.155) (0.143)

(A− V ertical)2 -1.128∗∗∗ -1.024∗∗

(0.408) (0.397)

N 22340 22343

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Note: Marginal Effects result from Beta regression estimates including
Fixed Effects and clustered standard errors by country. Interpretation:
Coefficients correspond to the average effect from one-unit change in the
k-th variable over industry comovement.
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closely synchronized among countries from euro zone.
Our results also point out that external and geographical drivers should

be considered when characterizing the inter-industrial diffusion mechanism.
Our results indicate that industry couples from economies having levels of
Openness of about one standard deviation higher than the average exhibit 30
percent less synchronization. This result may suggest that the more exposed
the economy to external factors, the less correlated domestic industries.
Moreover, the territory size expressed through LandSize is found to play
a potential role in the diffusion of shocks. Our results indicate that one
standard deviation increase on the relative country territory (i.e. 0.224) is
related to a decrease in industry synchronization of about 23 percent.

5.3 Second Stage: Multinomial Logit

Our second objective is to study further the nature of interindustry comove-
ment. Why some industries are strongly synchronized while most industries
have a moderate level of synchronization? Or even more, what determines
the strongly negative synchronization observed in some industry couples?

For this purpose, we classified industry pairs into m categories, accord-
ing to the direction and the size of co-movement. We use a Multinomial
Logit Regression (MLR) to analyze the probability for industry pairs of
belonging to the m-th category, and to observe to what extent this prob-
ability is determined by a set of characteristics. This regression technique
uses maximum likelihood estimation according to the following specification:

log(
Pr(ρc = m)
Pr(ρc = m0)

) = δl +Xβ(m) + Zλ(m) + εc (12)

where m denotes the synchronization category such that

m =


Strong+ if ρc ε (0.5, 1] (High and positive)
Weak+ if ρc ε (0, 0.5] (Weak and positive)
Weak− if ρc ε [−0.5, 0] (Weak and negative)
Strong− if ρc ε [−1,−0.5) (High and negative)

where index c ε 23,800 denotes industry couples contained in our sample,
X denotes a vector of industry pair-wise characteristics, and Z denotes a
vector of control variables specified at country level. The ratio Pr(ρc=m)

Pr(ρc=m0) is
also called the relative risk-ratio (RRR), and represents the relative proba-
bility for an industry couple of belonging to category m, with respect to the
base category m0.

The Multinomial Logit estimation yields an estimator for β and λ vec-
tors, which represents the marginal impact of one-unit changes in the set of
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characteristics, on the logarithm of the risk-relative ratio. Since we are inter-
ested in predicting variations of the form ∂Pr(pc=m)

∂xk
, results are interpreted

via the Average Marginal Effects presented in Table 5.11

Figure 3 shows how industry couples are distributed across these cate-
gories. In particular we observe that a non-negligible proportion (30 percent)
of total industry pairs in our sample have a negative co-variance. This could
correspond to couples of industries that are counter-cyclical by nature, or
being the result of input substitutions within production networks. How-
ever, negative covariance can be also due to less intuitive sources. For in-
stance, we observe that some rich economies such as Germany, United States
or France exhibit a high proportion of negatively synchronized industries,
while a group of developing countries conformed by India, China, Turkey
and Mexico have a very high proportion of positively synchronized indus-
tries. This lead us to think that the proportion of positively and negatively
synchronized industry couples might not being produced randomly, but in-
stead, it may be associated institutional or structural conditions. Therefore,
studying the factors leading an industry couple to exhibit a particular sign
on covariance may also be informative about the functioning of the inner
propagation mechanism of economies.

5.4 Results

As mentioned earlier, we classified industry couples into four categories ac-
cording to the strength (weak or strong) and sign of synchronization (nega-
tive or positive). Then, we apply a Multinomial Logit to identify what lead
industry couples to belong to one of these four types of synchronization.

Our results suggest that network asymmetry is related to strong and pos-
itive correlation category. We find that important levels of network asym-
metry make industries more likely to be strongly synchronized: an increase
of one standard deviation on Asymmetry Index (i.e. 0.302) would increase
the probability for industry couples of being positively and strongly syn-
chronized by about 16 percent. At the contrary, the probability of being
negative and strongly correlated decreases considerably in more asymmetric
configurations.

At industry level, we found that technological distance is a good predic-
tor of the sign of interindustry co-movement. Two indicators are used to
this purpose: the vertical specialization ωij (denoted by A-Vertical ) and
the network proximity (denoted by A-Proxy). Higher values on the average
vertical specialization imply that either both industries are highly and di-
rectly dependent, or there is a relatively important input supplier between
them. Our results indicate that one standard deviation increase on average
vertical specialization (i.e. 0.035) would increase the probability for industry

11Estimates of equation (12) are also available in the Annex.
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Table 5: Multinomial Logit: Explaining the interindustry comovement by
degree of synchronization (ρc). Average Marginal Effects by category of
comovement

Pr(ρc = Strong+) Pr(ρc = Weak+) Pr(ρc = Weak−) Pr(ρc = Strong−)

Asymmetry 0.514∗∗∗ -0.0688∗∗∗ 0.0553∗∗∗ -0.500∗∗∗

(0.00508) (0.00546) (0.00216) (0.00606)

EURO 0.230∗∗∗ -0.0489∗∗∗ -0.0122∗∗∗ -0.169∗∗∗

(0.00296) (0.00319) (0.00114) (0.00375)

LandSize -1.020∗∗∗ 0.00333 0.158∗∗∗ 0.859∗∗∗

(0.00598) (0.00675) (0.00232) (0.00449)

Openness -0.577∗∗∗ -0.00448 0.0404∗∗∗ 0.541∗∗∗

(0.00455) (0.00524) (0.00169) (0.00499)

EconomySize 0.120∗∗∗ -0.101∗∗∗ -0.0158∗∗∗ -0.00326
(0.00213) (0.00209) (0.000606) (0.00256)

Secondary × Secondary 0.475∗∗∗ -0.263∗∗ -0.0534∗∗∗ -0.159∗

(0.159) (0.123) (0.0157) (0.0816)

Tertiary × Tertiary 0.309∗∗ -0.231∗ -0.0372∗∗∗ -0.0412
(0.157) (0.127) (0.0132) (0.0775)

Secondary × Tertiary 0.338∗∗ -0.212∗ -0.0434∗∗∗ -0.0828
(0.156) (0.124) (0.0142) (0.0773)

Primary × Secondary 0.205 -0.171 -0.0286∗∗ -0.00559
(0.160) (0.122) (0.0133) (0.0795)

Primary × Tertiary 0.193 -0.199 -0.0330∗∗ 0.0393
(0.161) (0.125) (0.0135) (0.0769)

A− Centrality -0.0248∗∗ 0.0271∗∗ -0.0106∗∗ 0.00834
(0.0125) (0.0131) (0.00464) (0.0126)

D − Centrality 0.00790 -0.00817 0.00174 -0.00147
(0.00509) (0.00675) (0.00194) (0.00662)

A− Proxy 1.805∗∗∗ -0.692 0.0490 -1.161∗∗∗

(0.509) (0.613) (0.207) (0.390)

D − Proxy -0.993∗∗∗ 0.292 -0.0200 0.721∗∗∗

(0.232) (0.274) (0.0829) (0.227)

A− V ertical 1.724∗∗∗ -0.804 0.184 -1.103∗∗∗

(0.547) (0.538) (0.170) (0.408)

(A− V ertical)2 -9.082∗∗∗ 4.098∗∗ -0.151 5.135∗∗∗

(2.316) (1.613) (0.238) (1.145)

D − V ertical 0.202 0.0193 -0.0900 -0.131
(0.239) (0.254) (0.0620) (0.162)

A− IndSize -0.319 -0.370 0.157 0.532
(0.469) (0.440) (0.145) (0.414)

D − IndSize -0.0404 0.0224 0.00887 0.00911
(0.239) (0.226) (0.0629) (0.225)

N 22276 22276 22276 22276

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Note: Marginal Effects results
from Multinomial Logit including Fixed effects and clustered standard errors by country. Interpretation:
Coefficients correspond to the average effect from one-unit change in the k-th variable over the probability
for industry pairs of belonging to each comovement category.
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couples of being positive and strongly correlated by about 6 percent, while
reducing the probability of being negative and strongly correlated by about
4 percent.

The second indicator, Proxy, represents a more general measure of tech-
nological linkage. In particular, it assess how nearby are industries within
inter-industrial networks, independently on whether these interact directly
or indirectly. The effect of the average proximity on industry comovement
is similar to that obtained by the average vertical specialization. However,
contrary to the latter, the effect of network proximity on comovement is
subjected to reciprocity. That is, network proximity induce synchronization
only when both industries are mutually near from each other (i.e. lower
D-Proxy). Our result suggests that an increase of one standard deviation
on D−Proxy (i.e. 0.053) would reduce the probability for industry couples
of being positively and strongly correlated in about 5 percent, while increas-
ing the probability of being negatively and strongly correlated in about 4
percent.

Other control variables were found useful in characterizing interindustry
comovement. At country level, for instance, industries belonging to Euro-
zone are more likely to be positive and strongly synchronized. We also found
that external sector could play a central role in explaining interindustry co-
movement. Our results indicate that the openness to trade of economies
makes industries less likely to exhibit positive and strong levels of comove-
ment. Another factor seems to be the geography. Industries belonging to
countries having relatively big territories are less likely to be positive and
strongly synchronized, while increasing considerably the probability of being
negatively and strongly correlated. The production dispersion as well as the
transportation costs in big territories might be behind these results.

6 Conclusion

This work aimed at testing empirically recent theoretical propositions high-
lighting production networks as an important accelerator of microeconomic
shocks [Acemoglu et al (2012), Carvalho(2014)]. According to these, economies
having more asymmetric production networks tend to have more persistent
idiosyncratic shocks, due mainly to stronger network multipliers. Therefore,
in a context of strongly asymmetrical production networks, idiosyncratic
shocks may be diffused more easily throughout the economy, and poten-
tially resulting in aggregate fluctuations.

Our approach consists in demonstrating that these claims can be tested
empirically by studying the short term dynamic of aggregate production. In
particular, we demonstrate that most part of the (theoretical) acceleration
effect induced by more asymmetric production networks might be passing
through the inter-industry channel. Thus, were more asymmetric config-
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urations render idiosyncratic shocks more persistent via stronger network
multiplier, it should necessarily be reflected as higher industry synchroniza-
tion.

We focus on studying the sources of pairwise industry co-movement. Our
results suggest that in average, production networks asymmetry effectively
increases the level of general synchronization among domestic industries’
activity. After controlling for country-specific and industry-specific char-
acteristics, this effect is robust and statistically significant across all our
specification. This is interpreted as a reinforcement of the inter-industry
propagation mechanism as implied by propositions presented by Acemoglu
et al (2012). Moreover, we also observe that higher levels of vertical linkages
lead to higher levels of industry synchronization.

This approach is alternative to that presented by other studies in the
field, in which researchers are typically interested on searching the microe-
conomic origin of aggregate fluctuations. Instead, we focus the propagation
mechanism itself, i.e. that required by industry-specific perturbations to in-
duce large fluctuations. We find that the underling propagation mechanism
of production networks does react, and may be reinforced, by organization
of technological linkages, which is a necessary condition on the granular ori-
gin of aggregate fluctuations hypothesis. Finally, more recherche is needed
to explore how the structure of international production networks could be
shaping comovement among domestic industries.
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Appendices

A Industry Comovement

The decomposition of aggregate volatility presented in Figure (1) is ob-
tained by following Shea (2002), which decomposes aggregate volatility into
the weighted sum of industry variance and industry covariance. By taking
aggregate value added as a representative measure of total production, we
let aggregate value added growth rates (gt) be defined as a weighted average
of industrial value added growth rates (gjt):

gt =
N∑
j=1

wjt · gjt

where N is the number of industries, and wjt is the share of industry’s j
value added on aggregate value added at period t. Then, aggregate volatility
is approximated by the weighted sum of variance and covariance of industry
value added growth rates as follows :

σ2
i (gt) =

N∑
j=1

σ2
j (wjt · gjt) + 2

∑
1≤j<q≤n

σjq(wjt · gjt,wqt · gqt)

where σ2
i and σjq denote variance and covariance operators, respectively.

This equation yields a decomposition of aggregate volatility into variance
and covariance of domestic industries production. We apply these notions
over 40 economies for the period 1995-2009 by using information from the
WIOD dataset. Table 6 below presents the observed aggregate volatility, as
well as the estimated aggregate volatility computed through Equation (2).
We observe that, in general, this decomposition yields a good approximation
of the aggregate dynamics. Moreover, as presented prevously in Figure 1,
industry comovement remains the main source of volatility for aggregate
value added series. This is in line with what is observed in other studies
using different datasets and different periods of time. In particular, our
results suggest that in 28 out of the 40 countries considered in the sample,
interindustry comovement represents the main source of aggregate volatility,
by explaining at least 50 percent of total volatility. This observation may
indicate that, to some extent, interindustry channel could play an important
role on shaping aggregate dynamics.
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Table 6: Volatility of Aggregate Value Added (1996-2009)

Country
Observed Estimated
Std. Dev. Std. Dev Due to Comovement

σ(gt) σ(gt) ( ÷ )

AUS 0.9 0.88 5.5
AUT 2.06 1.84 72.3
BEL 1.62 1.74 75.78
BGR 4.82 3.31 -
BRA 1.99 1.97 79.52
CAN 1.32 1.36 77.25
CHN 1.9 2.62 39.54
CYP 1.86 2.66 12.32
CZE 3.49 4.54 67.57
DEU 2.16 2.17 80.47
DNK 2.14 2.07 59.59
ESP 2.1 2.05 84.48
EST 6.96 7.83 88.21
FIN 3.68 4.54 73.42
FRA 1.55 1.79 79.32
GBR 2.21 2.52 82.75
GRC 1.87 2.2 -
HUN 3.26 4.08 25.72
IDN 5.88 5.3 89.65
IND 2.13 2.11 43.01
IRL 4.35 4.09 39.09
ITA 2.11 2.1 88.8
JPN 2.81 3.02 82.2
KOR 3.89 4.02 80.97
LTU 6.35 5.78 86.46
LUX 3.08 2.9 40.06
LVA 6.99 6.76 81.19
MEX 3.28 3.7 87.26
MLT 3.35 4.94 25.24
NLD 2.1 2.12 76.56
POL 1.8 2.39 27.12
PRT 2.01 2.3 71.79
ROU 5.25 5.92 73.41
RUS 6.41 5.38 67.19
SVK 3.97 65.74 7.76
SVN 3.53 3.52 88.83
SWE 2.74 4.19 62.22
TUR 5.84 5.69 88.17
TWN 3.12 2.98 67.52
USA 1.97 2.19 73.2

Authors calculations. Source: WIOD
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B Average Marginal Effect

As mentioned earlier, the regression techniques used in this paper does not
provide direct measures of the relationship between the regressors (Xk) and
our variable of interest, ρc. In particular, contrary to linear regression, beta
coefficients cannot be directly interpreted as the marginal variation of the
form ∂(ρc)

∂(Xk) . We deal with this by computing the Marginal Effects. This
approach consists in computing the theoretical form of marginal derivative,
and use observed values to obtain a numeric estimation of ∂(ρc)

∂(Xk) . In this
paper, our variables of interest are:

(a) P (ρc = m): the probability for industry pairs to belong to category
m, and

(b) θX : the conditional mean of industry synchronization (ρc), such that
ρc ∼ Beta(θX).

According to Multinomail Logit Regression and Beta regression, our vari-
ables of interest are linked to explanatory variables as follows:

(a.1) π(m)
c = P (ρc = m) = eβ

(m)
i

X
(m)
iPm

j=1 e
β
(m)
i

X
(m)
i

(b.1) θX = e
Pk
i=1 βiXi

1+e
Pk
i=1

βiXi

The theoretical form of marginal derivatives of (a.1) and (b.1) with re-
spect to Xk are defined as follows:

∂(π(m)
c )

∂Xk
= π(m)

c · [β(m)
k −

J∑
m=1

β
(m)
k · π(m)

c ]

∂θX
∂Xk

= βk · θX(1− θX)

We obtain an estimation of marginal derivative based on these theoretical
forms, denoted Margin Effect (ME), by replacing estimated values of βk and
observed Xk. Estimates of ME are computed for each observation within the
sample, and average values are used as a representative measure of marginal
effects:

AME
(m)
k =

1
n

n∑
c=1

∂(π̂(m)
c )

∂Xk

AMEk =
1
n

n∑
c=1

∂θ̂X
∂Xk
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C The Model

Modeling Interindustry Comovement with industry-specfic shocks

Consider an economy composed by n industries, and whose the produc-
tion process of the ith industry is characterised by the following production
function:

Yi = ei

n∏
j

(Y ωij
j )α (13)

where Yj represents intermediate goods provided by industry j ε {1...n},
and where ωij ε (0, 1) denotes the level of specialization of industry i on the
technology provided by industry j. Through this function, it is also assumed
that industry i ’s production is subjected to orthogonal and identically dis-
tributed idiosyncratic technological shocks, denoted by ei.

The production function presented above characterizes production net-
works at its finest level. Under this setting, technological linkages allow in-
dustries to interact and to become interdependent, by allowing idiosyncratic
disturbances to be transmitted downstream through the production chain.
Recent propositions highlight the role of production network in accelerat-
ing micro-economic shocks, by pointing out that under some conditions, the
organization of technological linkages may be such that it admits a strong
contagion mechanism [Acemoglu et al (2012), Carvalho (2014)].

In this paper, we are interested in testing empirically whether the trans-
mission of industry-specific shocks is conditioned by the organization of
production networks. This analysis is implemented by studying the syn-
chronization of industry production growth rates. In what follows, we show
how the organization of production networks may determine the force of
inter-industry spillovers, expressed through the strength of growth rates co-
movement.

Let the production function presented above be expressed in growth rates
form as follows:

gyi = gei + α

n∑
j=1

ωij · gyj

where gyi = ∂(log(Yi))
∂(t) and gei = ∂(log(ei))

∂(t) . It can be noticed that the
mechanism of vertical transmission characterizing production networks is
maintained after this transformation. Moreover, the equation system formed
by the n transformed production functions implies a multiplier mechanism
having the following form:

Y =
[
I− α ·W

]−1 · Z
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where Y =
[
gy1 gy2 · · · gyn

]T , Z =
[
ge1 ge2 · · · gen

]T and W
is a squared matrix whose (i, j) entries correspond to ωij . We study the
link between the strength of the network multiplier and the organization or
production networks, by studying the Variance-Covariance matrix of the
vector containing the industry production growth rates (Y):

ΣY = [I− αW]−1 ΣZ [I− αW]−1(T ) (14)

where ΣY and ΣZ denote the variance-covariance matrix of industry
production and idiosyncratic shocks growth rates, respectively. It is worth
noting that since idiosyncratic shocks are assumed orthogonal, ΣZ is diago-
nal.

By following the property of power series expansion such that [I− αW]−1 =∑∞
k=0 α

kWk, for α < 1, we can study the variance-covariance matrix of in-
dustry production growth rates through its first order approximation:

ΣY = [I + αW] ΣZ [I + αW]T

or simply,

ΣY =
(
I + α ·WT + α ·W + α2W ·WT

)
ΣZ

It can be noticed that even if industry-specific shocks are assumed or-
thogonal, the variance-covariance matrix of industry production growth
rates (ΣY) is not diagonal, as long as off-diagonal elements of W are different
from zero. That is to say, inter-industry linkages allow industry production
growth rates to comove as a result of the vertical transmission of idiosyn-
cratic shocks, even if the latter are independent.

D Proofs

PROOF OF PROPOSITION 1: Let aggregate production growth rate
(gY ) be defined as a weighted sum of industrial production growth rates (gy)
as follows:

gY =
n∑
i=1

wi · gyi

where wi denotes the share of aggregate production that is produced by
industry i. In addition, let aggregate volatility be defined by

σ2
Y =

1
n2
· V ar(

n∑
i=1

gyi)

where σ2
Y = V ar(gY), and by setting wi = 1/n for ∀i.
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By following the theoretical framework presented above, it is possible
to attribute an analytic form to V ar(

∑n
i=1 gyi). This term is equivalent to

summing up the elements of the variance-covariance matrix of industrial
production growth rates, ΣY. Therefore, aggregate volatility can be re-
expressed as follows:

σ2
Y =

1
n2
· (~1)T · ΣY ·~1

where ~1 denotes the all-ones vector of order n. It is possible to highlight
the network properties of the inter-industrial diffusion channel by using the
general form for Σz expressed through equation (14); and by letting aggre-
gate volatility be redefined by:

σ2
Y = vT · ΣZ · v

where v = 1/n · [I − αW T ]−1 · ~1 corresponds a to a vector of Eigen-
vector centrality. This concept is used in social network theory to identify
more interconnected network members. In this case, the presence of this
vector suggests that the industries’ power of diffusion relies on how well
interconnected are these are within production networks. This result is par-
allel to what was firstly proposed by Carvalho(2009) and Acemoglu et al
(2012), where in a general equilibrium framework, the capacity of industries
to induce aggregate fluctuations is proportional to v, their level network in-
fluence.

PROOF OF PROPOSITION 2: Let aggregate volatility be character-
ized by its first order approximation of ΣY:

σ2
Y =

1
n2
· (~1)T ·

(
ΣZ + αΣZ ·WT + αW · ΣZ + α2W · ΣZ ·WT

)
·~1

where ΣZ denote the variance covariance matrix of idiosyncratic shocks,
and W whose (i, j) entries correspond to ωij . To study how the organi-
zation of production networks may determine the way idiosyncratic shocks
propagate, lets study what happen to aggregate volatility in (a) absence of
inter-industrial trade, and (b) in presence of technological linkages.

(a) Without of Inter-Industrial Trade

Under this scenario, the matrix containing the inter-industrial transac-
tions, W, is empty. Aggregate volatility is then defined by:

σ2
Y =

1
n2
· (~1)T ·

(
ΣZ

)
·~1

Since industry-specific shocks are supposed orthogonal and identically
distributed, aggregate volatility equals:
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σ2
Y =

1
n
· σ2

z

where σ2
Y denotes the variance of idiosyncratic shocks, ei.

(b) With Inter-industrial Trade

Under this scenario, industries are interdependent and idiosyncratic per-
turbations are allowed to propagate downstream in the production chain and
across the technological plan. The variance-covariance matrix of industry
growth rates, ΣZ , is conditioned by the properties of production networks
through the matrix W. To see this, let the first order approximation of ag-
gregate volatility be re-expressed as a function of industries’ centrality as
follows:

σ2
Y =

1
n2

(
(~1)TΣZ

~1 + α(~1)TΣZ · ~d+ α(~d)T · ΣZ
~1 + α2(~d)T · ΣZ · ~d

)
where ~d = W T ·~1 represents a vector containing the first order Outdegree

centrality, such that dj =
∑n

i=1 ωij . This notion attributes higher levels
of centrality to more important input suppliers. That is, those satisfying
directly a large proportion of the network’s total intermediate consumption.
Last equation suggests, in addition, that under this framework the capacity
of industries to diffuse idiosyncratic shocks downstream within the network
would depend on their level of Outdegree centrality. That is to say, on how
dependent is the network as a whole to a particular technology.

By developing further, aggregate volatility can be re-expressed as follows:

σ2
Y =

1
n2

 n∑
j=1

σ2
zj + 2α ·

n∑
j=1

σ2
zj · dj + α2 ·

n∑
j=1

σ2
zj · d

2
j

 (15)

Since industry-specific shocks are assumed independent and identically
distributed, it implies

∑n
j=1 σ

2
zj = n · σ2

z , and aggregated volatility would
equal:

σ2
Y =

1
n
· σ2

z

[
1 + 2α · d+ α2 · d2

]
(16)

where d =
(

1
n

)∑n
j=1 dj , and d2 =

(
1
n

)∑n
j=1 d

2
j .

Since by definition d = 1, it follows that d2 = Var(d)+1. Then, aggregate
volatility would be redefined as

σ2
Y =

1
n
· σ2

z

[
1 + µ (α,CV (d))

]
(17)
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where µ denotes the production networks multiplier such that

µ (α,CV (d)) =
[
2α+ α2

(
1 + CV(d)2

)]
where CV (d) = σ

d
/µ

d
denotes the coefficient of variation of the first

order outdegree centrality, d, with σ
d

=
√
V ar(d) and µ

d
= d. This result

implies that higher levels of heterogeneity in industry centrality (i.e. higher
CV(d)) are directly related to higher levels of aggregate volatility.

PROOF OF PROPOSITION 3: Before presenting the proof, we intro-
duce two definitions regarding Industry Variance and Covariance.

Definition 3.1 : Industry Variance (σ2
y) equals the sum of diagonal

elements of the first order approximation of Variance-Covariance matrix:

σ2
y =

1
n2

(~1)T ·Diag(ΣY ) ·~1

⇔ σ2
y =

1
n2

( n∑
j=1

σ2
zj + 2α

n∑
j=1

σ2
zjωjj + α2

n∑
j=1

n∑
k=1

σ2
zjω

2
kj

)

Definition 3.2 : Industry Covariance (σyy) equals the sum of the off-
diagonal elements of Variance-Covariance matrix ΣY :

σyy = σ2
Y − σ2

y

=
1
n2

 n∑
j=1

σ2
zj + 2α ·

n∑
j=1

σ2
zj · dj + α2 ·

n∑
j=1

σ2
zj · d

2
j


− 1
n2

 n∑
j=1

σ2
zj + 2α

n∑
j=1

σ2
zjωjj + α2

n∑
k=1

n∑
j=1

σ2
zjω

2
kj



σyy =
2α
n2

 n∑
j=1

σ2
zj · dj −

n∑
j=1

σ2
zjωjj

+
α2

n2

 n∑
j=1

σ2
zj · d

2
j −

n∑
k=1

n∑
j=1

σ2
zjω

2
kj



This proof is presented in two stages. The first part consists on proving
that the Network Asymmetry has a non-negative impact on the level of in-
dustry synchonization. The second part of the proof, in turn, shows that the
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acceleration of aggregate volatility can be separated into the effect induced
over Industry Variance, and that induced over Industry Covariance.

(a) First Part: Consider the Definition 3.2. Since industry-specific
shocks are assumed independently and identically distributed with variance
σ2
z , Industry Covariance may be expressed as follows:

=
σ2
z

n2

2α

 n∑
j=1

dj −
n∑
j=1

ωjj

+ α2

 n∑
j=1

d2
j −

n∑
k=1

n∑
j=1

ω2
kj

 (18)

or,

=
1
n
· σ2

z

[
2α ·

(
d− ωjj

)
+ α2

(
d2 − (n) · ω2

)]

where d =
1
n

∑n
j=1 dj , d2 =

1
n

∑n
j=1 d

2
j , ωjj =

1
n

∑n
j=1 ωjj and ω2 =

1
n2

∑n
k=1

∑n
j=1 ω

2
kj . Since par definition d = 1 and ω = 1/n, it follows that

d2 = Var(d) + 1, and ω2 = V ar(ω) + (1/n)2. Then,

=
1
n
· σ2

z

[
2α (1− ωjj) + α2

(
V ar(d) + 1− n ·

[
V ar(ω) + (1/n)2

])]

=
1
n
· σ2

z

[
2α (1− ωjj) + α2

(
CV (d)2 − CV (ω)2

n
+
n− 1
n

)]
where CV (d) and CV (ω) represent the coefficient of variation of the

first order outdegree centrality and the coefficient of variation of direct input
flows. Last equation implies that the network asymmetry is positively linked
to the Industry Covariance. More importantly, it can be shown that this
effect is non-negative. To see this, consider Equation (18):

=
2α · σ2

z

n2

 n∑
j=1

dj −
n∑
j=1

ωjj

+ α2

 n∑
j=1

d2
j −

n∑
k=1

n∑
j=1

ω2
kj



=
2α · σ2

z

n2

 n∑
j=1

n∑
i=1
i6=j

ωij + α2

 n∑
j=1

(
n∑
k=1

ωkj

)2

−
n∑
k=1

n∑
j=1

ω2
kj
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=
2α · σ2

z

n2

 n∑
j=1

n∑
i=1
i6=j

ωij + α2
n∑
j=1

( n∑
k=1

ωkj

)2

−
n∑
k=1

ω2
kj




since
∨
jε {1, ..., n}:

(
∑n

k=1 ωkj)
2 −

∑n
k=1 ω

2
kj = (ω1j + ω2j + ...+ ωnj) (ω1j + ω2j + ...+ ωnj)

−
∑n

k=1 ω
2
kj

=
[∑n

k=1 ω
2
kj + 2

∑
16k<i6n ωkjωij

]
−
∑n

k=1 ω
2
kj

= 2
∑

16k<i6n ωkjωij
(
∑n

k=1 ωkj)
2 −

∑n
k=1 ω

2
kj ≥ 0

We conclude that the impact of the network asymmetry over Industry
Covariance is always positive in presence of interindustrial trade.

(b) Second Part : According to Equation (17), higher production network
asymmetry implies stronger network spillovers, and thus, higher aggregate
volatility. This is because more heterogenous centrality distribution implies
stronger inter-industry diffusion mechanisms. In this context, it is possible
to decompose the network multiplier as a weighted sum of the accelerator
effect induced over Industry Variance, and that induced over Industry Co-
variance. To see this, consider the aggregate volatility definition presented
Equation (16):

σ2
Y =

1
n
· σ2

z

1 +
2α
n
·
n∑
j=1

dj +
α2

n
·
n∑
j=1

d2
j


where dj =

∑n
i=1 ωij the Outdegree centrality indicator.

By taking the Definitions (3.1) and (3.2), aggregate volatility can be
re-expressed as follows:

σ2
Y = σ2

y + σyy

such that:

σ2
y =

1
n
· σ2

z

1 +
2α
n

n∑
j=1

ωjj +
α2

n

n∑
j=1

n∑
i=1

ω2
ij


and

σyy =
2
n
· σ2

z

α
n

n∑
j=1

n∑
i=1
i 6=j

ωij +
α2

n

∑
1≤i<k≤n

ωijωkj
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Finally, aggregate volatility can be re-expressed in terms of the network
multiplier as follows:

σ2
Y =

1
n
· σ2

z [1 + (1− τ) · µ(α,CV ) + τ · µ(α,CV )]

where µ(α,CV ) denotes the network multiplier introduced in equation
(17), and τ = σyy/µ(α,CV (d)) is the share of the network multiplier induced
by a reinforcement of the Industry Covariance.
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Table 7: Control Variables Description

Class Label Variable Description

C
o

u
n

tr
y-

S
pe

ci
fi

c

Asymmetry
1

15

2009X
t=1995

Asymmetry(l,t)

Measure of industry heterogeneity
with respect to production network
centrality. See Section 3

LandSize
Land(l)

Land(RUS)

Country’s total area relative to
Russia’s territory. Author’s
calculations Source: World Bank

EURO Dummy
Dummy variable denoting industry
couples from Eurozone economies.
Source: Eurostat

EconomySize
1

15

2009X
t=1995

V Al,t
V A(USA,t)

Economy size relative to USA
economy. VA denotes aggregate
detrended value added.
Source: WIOD

Openness
1

15

2009X
t=1995

Exp(l,t) + Imp(l,t)

GDP(l,t)

Computed as the sum of
Exports and Imports
for each economy divided by
total GDP. Source: World Bank

In
d

u
st

ry
-S

pe
ci

fi
c

V ertical(i,j)
1

15

2009X
t=1995

ωij,t
Direct Vertical Specialization (j on i).
See Section 3.

Centrality(i)
1

15

2009X
t=1995

Out30thi,t
Outdegree Centrality of Order 30th.
See Section 3

Proxy(i,j)
1

15

2009X
t=1995

(Distance(ij,t))
−1

Computed by using Floyd-Warshall
algorithm. Denotes the network
proximity between industries i and j.

IndSize(i)
1

15

2009X
t=1995

V Ai,tPn
j V Aj,t

The share of industry’s i value added
on total aggregate value added.
Source: WIOD

P
a

ir
-W

is
e

A− V ertical Avg(ωij , ωji) Average Vertical Specialization.

D − V ertical Abs(ωij − ωji)
Absolute Difference of Vertical
Specialization.

A− Centrality Avg(Out
(30th)
i , Out

(30th)
j ) Average Outdegree Centrality

D − Centrality Abs(Out
(30th)
i −Out(30th)

j )
Absolute Difference of Network
Centrality

A− Proximity Avg(Proxy(ij), P roxy(ji)) Average Network Proximity

D − Proximity Abs(Proxy(ij) − Proxy(ji))
Absolute Difference of Network
Proximity

A− IndSize Avg(IndSize(i), IndSize(j)) Average Industry Size

D − IndSize Abs(IndSize(i) − IndSize(j)) Absolute Difference of Industry Size
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Table 8: Multinomial Logit: Explaining comovement by degree of synchro-
nization ρc in the period 1995-2009

Estimated Equation: log(
Pr(ρc = m)

Pr(ρc = m0)
) = δlι+Xβ(m) + Zλ(m) + εc

where m0: ρc ε (0, 0.5) and δlι: Fixed effects by country

log(
Pr(ρc = Strong+)

Pr(ρc = Weak+)
) log(

Pr(ρc = Weak−)

Pr(ρc = Weak+)
) log(

Pr(ρc = Strong−)

Pr(ρc = Weak+)
)

Asymmetry 2.962∗∗∗ 2.166∗∗∗ -2.064∗∗∗

(0.0491) (0.110) (0.0397)

EURO 1.355∗∗∗ -0.533∗∗∗ -0.669∗∗∗

(0.0213) (0.0553) (0.0198)

LandSize -5.645∗∗∗ 7.195∗∗∗ 3.902∗∗∗

(0.0746) (0.134) (0.0421)

Openness -3.180∗∗∗ 2.048∗∗∗ 2.430∗∗∗

(0.0459) (0.0985) (0.0329)

EconomySize 0.842∗∗∗ -0.493∗∗∗ 0.153∗∗∗

(0.0151) (0.0233) (0.0142)

Secondary × Secondary 3.088∗∗∗ -1.896∗∗∗ -0.277
(1.070) (0.659) (0.412)

Tertiary × Tertiary 2.113∗∗ -1.198∗∗ 0.198
(1.064) (0.578) (0.400)

Secondary × Tertiary 2.240∗∗ -1.518∗∗ -0.0237
(1.057) (0.609) (0.393)

Primary × Secondary 1.434 -0.915 0.257
(1.079) (0.560) (0.378)

Primary × Tertiary 1.416 -1.026∗ 0.502
(1.086) (0.573) (0.373)

A− Centrality -0.185∗∗ -0.494∗∗ -0.0170
(0.0806) (0.206) (0.0721)

D − Centrality 0.0580∗ 0.0875 0.00884
(0.0336) (0.0864) (0.0390)

A− Proximity 11.19∗∗∗ 2.600 -3.909
(3.611) (9.331) (2.480)

D − Proximity -6.000∗∗∗ -0.928 2.676∗∗

(1.588) (3.670) (1.356)

A− V ertical 10.94∗∗∗ 8.540 -3.374
(3.711) (7.413) (2.430)

(A− V ertical)2 -57.39∗∗∗ -10.52 15.52∗∗∗

(15.52) (10.29) (4.873)

D − V ertical 1.083 -3.931 -0.672
(1.667) (2.789) (0.999)

A− IndSize -1.117 7.646 3.104
(2.975) (6.583) (2.392)

D − IndSize -0.262 0.343 0.00677
(1.572) (2.762) (1.202)

N 22276 22276 22276

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Note: Regression estimates
includes Fixed Effects and clustered standard errors by country
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