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Abstract

Linkages between Emissions Trading Systems (ETSs) are crucial for en-
suring cost-effectiveness in the fragmented global climate policy land-
scape engendered by the Paris Agreement. Research has hitherto fo-
cused on the simpler case of bilateral linkages, in part because a rigorous
analysis of multilateral linkages poses significant challenges. We propose
a language and a theoretical model that allow us to describe and study
multilateral linkages between ETSs under uncertainty analytically. We
show how every multilateral linkage can be decomposed into its internal
bilateral linkages, and demonstrate that linkage is superadditive. We
provide a formula for the gains from linkage coalitions of ETSs as a func-
tion of the constituent coalitions’ sizes and shock characteristics. While
the global market is socially efficient, we show that it may not be the
most preferred outcome for individual jurisdictions, even in the absence
of linkage costs. When we introduce linkage costs which are increas-
ing in both the number and aggregate size of partnering jurisdictions
we find that efficient linkage coalition structures may differ from the
global market. Finally, we study several alternative cost-sharing rules
to check if they render the globally efficient coalition structure a Pareto
improvement with respect to autarky. We find that several intuitively
appealing rules do not meet this criterion for individual jurisdictions.
We demonstrate our theoretical results using a calibrated quantitative
example.

Keywords: Emissions Trading, Bilateral linkage, Multilateral linkage,
Global Carbon Market, Climate Change.
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1 Introduction

Markets for emission permits have long been an important climate policy tool in regulating
greenhouse gas emissions. A patchwork of jurisdictional emissions trading systems (ETSs)
tailored to local circumstances and specific constraints has emerged recently. ETSs are in
use in Europe, Switzerland, South Korea, seven Chinese provinces and cities, and several US
states and Canadian provinces among other places (ICAP, 2017). More are in the pipeline
with China, the world’s largest emitter, planning to start a national market in 2017.

Systems integration will be a significant element of the global climate change policy frame-
work in the future (Bodansky et al., 2016). The market provisions contained in Article 6 of
the Paris Agreement, adopted by the UN in December 2015, encourage the voluntary integra-
tion of emission reduction efforts. Linkages between jurisdictional ETSs is one way this can
be done and would generate economic benefits by spreading abatement efforts cost effectively
among the participating systems, ultimately generating a uniform linking price. In fact, some
jurisdictions are already linked (California and Québec), will link in the near future having
completed the required negotiations (Europe and Switzerland), or are contemplating a link
with an existing system (Ontario with California and Québec). Against this backdrop, con-
ventional intuition suggests that the global market is the most desirable coalition structure
from a global perspective.1,2 However, it is not a forgone conclusion that the globally linked
market will be adopted when viewed from the perspective of a single jurisdiction, as attested
by the few and far between instances of linkage. Moreover, in the presence of costs associated
with the formation of linked systems, even the global market may not be globally efficient
let alone incentive compatible under alternative cost-sharing arrangements.

Current research examining the determinants of the benefits of linking ETSs has primarily
focused on bilateral linkage.3 Other theoretical contributions investigate the effects of form-
ing a global market, e.g. Holtsmark & Midttømme (2015) and Caillaud & Demange (2016)
from different perspectives. Using a computable general equilibrium model, Carbone et al.
(2009) consider the formation of a single coalition of linked ETSs with endogenous selection
of non-cooperative emissions caps. Heitzig (2013) numerically explores the dynamic process

1All items in italics are formally defined later in the text.
2A coalition structure is a partition of the set of jurisdictions. Given the set of five jurisdictions in this

paragraph, a possible coalition structure comprises two disjoint coalitions of linked markets, e.g. Europe
& Switzerland and California & Québec with Ontario’s system under autarky. The global market is the
structure consisting of one coalition containing all five jurisdictions.

3A fast-growing literature explores economic and political motivations of linking two jurisdictions; see
Rehdanz & Tol (2005), Flachsland et al. (2009), Jaffe et al. (2009), Mehling & Haites (2009), Tuerk et al.
(2009), Burtraw et al. (2013), Ranson & Stavins (2016) and Doda & Taschini (2016), among others.
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of formation of coalitions of linked ETSs where jurisdictions have the possibility to coordi-
nate on emissions cap selection. These last two contributions, however, do not characterize
multilateral linkage analytically nor do they investigate the determinants of coalition struc-
tures. Compared to bilateral linkages, a formal study of multilateral linkages poses numerous
challenges, as discussed in Mehling & Görlach (2016), who propose different options for a
successful management of these linkages.

In this paper we propose a language and a general theoretical model that allow us to describe
and study multilateral linkage between ETSs. We find that any multilateral linkage can be
decomposed into its internal bilateral linkages. Second, we show that linkage is superadditive,
i.e. the aggregate expected gains from the union of disjoint coalitions of linked ETSs is no less
than the sum of separate coalitions’ expected gains. Third, we provide an analytical formula
for this economic gain as a function of coalitions’ sizes and shock characteristics, generalizing
the results in Doda & Taschini (2016).

Such a formal approach is useful since the results for bilateral linkages in Doda & Taschini
(2016) do not translate easily to multilateral linkages. In a bilateral setting linkages with
larger systems are more beneficial, all else constant. In addition, a jurisdiction prefers the
permit demand in its partner’s market to be variable and weakly correlated with its own.

To build intuition, consider the special case with three jurisdictions where the variance of the
shocks affecting each jurisdiction is identical and two jurisdictions have the same size. Let
the third jurisdiction be larger. When evaluating possible linkages, the larger jurisdiction
has little incentive to link exclusively with a single smaller jurisdiction. Instead, it prefers to
be part of the trilaterally linked market. Conversely, because in bilateral links smaller juris-
dictions tend to benefit the most, they prefer a bilateral linkage with the larger jurisdiction.
In other words, the larger jurisdiction prefers a trilateral linkage whereas the two smaller
jurisdictions prefer a bilateral linkage with the larger jurisdiction.4

In general, the identification of the outcome of multilateral linkage is not clear when one moves
away from special cases. Moreover, the number of possible coalition structures increases
exponentially with the number of jurisdictions. For example, with four jurisdictions there are
six possible bilateral linkages (with two jurisdictions in autarky), three groups of two bilateral
linkages, four trilateral linkages (with one jurisdiction in autarky) and one four-jurisdiction

4Similarly, consider three jurisdictions with the same size where one jurisdiction, called NEG, is negatively
correlated with the other two jurisdictions, called POS1 and POS2, which are positively correlated with each
other. When evaluating possible linkages, jurisdiction NEG has little incentive to link bilaterally with POS1
or POS2 alone and prefers trilateral linkage. Conversely, since the gains from the link {POS1,POS2} are
smaller, POS1 and POS2 prefer a bilateral linkage with jurisdiction NEG exclusively.
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linkage. That is, combined with complete autarky where each system operates independently,
we have 15 coalition structures in total. With 10 jurisdictions, there are already 115,975
possible coalition structures. Since we can decompose any multilateral linkage into its internal
bilateral linkages, our model can in principle handle and characterize the aggregate and
jurisdiction-specific gains in all possible coalition and coalition structures that are generated
by any number of jurisdictions.

Empirically, the rare instances of linkages that have occurred so far did so on a bilateral basis
between (i) jurisdictions with aligned ETSs and thus relatively low linkage costs (California
and Québec); (ii) one small jurisdiction wishing to join a much larger system, the former thus
bearing all the costs associated with the link (Europe and Norway). We take explicit account
of this observation in our model and study the effects of both the introduction of linkage
costs and of alternative cost-sharing arrangements between jurisdictions. This is our second
novel contribution to the literature on linking. Formally, linkage costs have two varaible
components: implementation costs that are higher the larger the jurisdictions involved and
negotiation costs that are higher the larger the number of partnering jurisdictions. The
magnitude of linkage costs is thus endogenous to linkage coalition formation. This reflects
the observation that (i) it is more costly for large jurisdictions to implement linkage; (ii) the
larger the number of jurisdictions sitting at the negotiation table, the more difficult to find
a compromise (Keohane & Victor, 2016). These considerations have given rise to concepts
such as minilateralism (Falkner, 2016) or polycentrism (Ostrom, 2009).

In the presence of costs associated with the formation of linkage coalitions, non-degenerate
coalition structures different from the global market may yield the higher aggregate gains net
of costs. In particular, such coalition structures may feature some jurisdictions that remain
in autarky, unlinked, which we refer to as incomplete linkage as well as coexisting linkage
coalitions, which we refer to as polycentric linkage. In this paper, we take the perspective of
a social planner in investigating (i) the nature and determinants of efficient linkage coalition
structures with linkage costs; (ii) how these costs can be shared among participants so that
we obtain a Pareto improvement with respect to complete autarky.

Notice that our paper explores the effects of linking under uncertainty by introducing id-
iosyncratic shocks in each jurisdiction. It is the interaction of these shocks that generates
the linkage-related effects on jurisdictional emission levels and welfares. We adopt a combi-
natorial approach to the analysis of interjurisdictional links to isolate these effects. To this
end we assume there is no strategic interaction between cap selection and linking decisions of
jurisdictions. More specifically, caps are selected non-cooperatively under complete autarky
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first, and are maintained when considering the merits of linking. This is deliberate because
our aim is to understand the determinants of the gains from multilateral linkage and to be
able to characterize them analytically.

With invariant caps and in the absence of linkage costs, jurisdictions are always better off in
any linkage coalition than under autarky. However, they gain more in some coalitions than
others, and our analysis allows us to rank alternative coalitions from a given jurisdiction’s
perspective. Moreover, linkage costs and various cost-sharing arrangements can be readily in-
corporated in our model so that jurisdictions can choose among linkage coalitions even in the
presence of costs. We argue that accounting for costs associated with linkage brings realism
and can address interjurisdictional equity concerns by identifying cost-sharing arrangements
that implement the socially efficient outcome. In a world where permit or cash transfers can
run into significant political-economy obstacles, this has important practical relevance.

In doing so, our paper deviates from the literature on self-enforcing international environmen-
tal agreements (IEA) initiated by Carraro & Siniscalco (1993) and Barrett (1994) in three
fundamental ways. First, most of this literature studies a Cartel game where only one single
coalition can form and sets aside the question of multiple coalitions. It typically assumes that
coalition members choose their emission caps cooperatively (the coalition is a metaplayer).5

Helm (2003) also identifies the perverse incentives on cap selection that anticipation of link-
age can have. Second, we abstract from coalition stability considerations. In general, the
literature finds somewhat pessimistic results regarding the size of stable coalitions and iden-
tifies a trade-off between efficiency and stability. We also note that the different coalition
membership rules and equilibrium concepts in the literature lead to different predictions re-
garding stability.6 Note that a recent contribution by Caparrós & Péreau (2017) shows that
a sequential negotiation process always leads to the grand coalition even when it is not stable
in a multilateral (one-shot) negotiation stage. Third, while we acknowledge that transfers

5Absent uncertainty, however, interjurisdictional emissions trading has no effect on the overall emissions
level as the effort sharing is already efficient from the coalition’s perspective. There are notable exceptions in-
cluding Finus & Maus (2008) and Carbone et al. (2009). The latter paper, in particular, considers endogenous
non-cooperative cap-setting by coalition members so that emissions trading matters in their model.

6For instance, Ray & Vohra (1997) study equilibrium binding agreements where coalitions can break
up into smaller sub-coalitions, but not vice versa. Ray & Vohra (1999) consider some kind of Rubinstein-
type bargaining game for coalition formation. Bloch (1995) and Bloch (1996) analyses an alternative-offers
bargaining game and an infinite-horizon coalition formation game, respectively, both requiring unanimity
for a coalition to form. Yi (1997) considers alternative coalition membership rules, e.g. open membership,
unanimity and equilibrium bindingness. In the climate context, Osmani & Tol (2009) analyse farsightedly
stable linkage coalitions in the sense of Chwe (1994). Finally, Konishi & Ray (2003) consider a dynamic
coalition formation process with farsighted players. With a similar sequential linking process, Heitzig (2013)
allows for coalition members to simply link markets but also coordinate on cap selection.
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can increase both participation in and stability of linkage coalitions (Nagashima et al., 2009;
Lessmann et al., 2015), we approach transfers via alternative linkage cost-sharing rules rather
than via alternative permit allocation rules (Altamirano-Cabrera & Finus, 2006).7

The paper is organized as follows. Section 2 introduces the model and defines jurisdictional
and aggregate gross gains from bilateral linkages. These constitute the basic elements of
our subsequent analysis of multilateral linkage. Section 3 introduces the language used in
describing multilateral linkage and proposes a general model to study and characterize pos-
sible coalition structures. Linkage costs, globally efficient coalition structure they induce and
several cost-sharing arrangements are introduced in Section 4. The quantitative illustration
is in Section 5. Section 6 concludes. An appendix contains the derivations and proofs. All
numbered tables and figures are provided at the end.

2 The modelling framework

We consider a standard static model of a perfectly competitive emission permit market that
specialises Weitzman (1974) and Yohe (1976) to the sole case of quantity-based policies
designed to regulate uniformly mixed pollution in several jurisdictions with independent reg-
ulatory authorities. In the model we assume separability between the market for permits
and markets for other goods and services. That is, we conduct a partial-equilibrium analysis
focusing exclusively on the jurisdictions’ regulated emissions and abstract from interactions
with the rest of the economy. Second, we assume that the only uncertainty is in the form
of additive shocks affecting the jurisdictions’ unregulated levels of emissions. These assump-
tions are somewhat restrictive but relatively standard in the literature. Third, we represent
jurisdictions’ benefits and damages assuming quadratic functional forms. This is standard,
allows for derivation of analytical results and can be viewed as a local approximation of more
general functional specifications (Newell & Stavins, 2003). Fourth, the international political
economy dimension is omitted. Each jurisdiction has a regulatory authority who can design
policies independently of authorities in other jurisdictions with no anticipation of linkage.
The model is solved under risk-neutrality.8

Jurisdictions. There are n jurisdictions and I = {1, . . . , n} denotes the set of jurisdictions.
7In this respect, note that the globally efficient coalition structure defined in Section 4 is potentially

internally stable in the sense of Carraro et al. (2006).
8As in Doda & Taschini (2016), risk aversion does not alter our results.
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Total benefits from emissions in jurisdiction i ∈ I are a function of the level of emissions
qi ≥ 0 and are subject to jurisdiction-specific shocks θi such that, ∀i ∈ I

Bi(qi; θi) = b0 + (b1 + θi)qi −
b2

2ψi
q2
i , with b0, b1, b2 ≥ 0, (1)

where ψi may alternatively characterize jurisdiction i’s size or abatement technology. A
high ψi may represent a jurisdiction whose size of regulated emissions is high. To see this,
fix θi = 0 for all i ∈ I, i.e. jurisdictions are identical up to the parameter ψi’s. Then,
jurisdiction i’s optimal emission level corresponding to an arbitrary permit price p ∈ (0; b1]
is q∗i (p) = ψi(b1 − p) and it is proportional to ψi. There is an alternative interpretation.
The ratio b2

ψi
controls the slope of jurisdiction i’s linear marginal abatement cost schedule.

Hence, a high ψi may also represent a jurisdiction who has access to low-cost abatement
opportunities at the margin. In what follows we will refer to ψi as the size parameter.

For analytical convenience, we assume that jurisdiction-specific shocks are mean-zero and
have constant variance.9 They may be correlated across jurisdictions, i.e. ∀(i, j) ∈ I × I−i

E{θi} = 0, V{θi} = σ2
i , and Cov{θi, θj} = ρijσiσj with ρij ∈ [−1; 1]. (2)

Jurisdiction-specific shocks are limited to the intercepts of the marginal benefit schedules.
These shocks capture the net effect of stochastic factors that may influence emissions and their
associated benefits, e.g. business cycle and technology shocks, jurisdiction-specific events,
changes in the price of factors of production, weather fluctuations, etc. To see this, note that
absent regulation, jurisdictions emit up to their baseline emissions (q̄i)i∈I such that, ∀i ∈ I

q̄i = ψi
b2

(b1 + θi). (3)

For instance, a positive shock realization θi > 0 could be seen as a favourable productivity
shock that increases benefits from emissions, and correspondingly, baseline emissions levels.
In particular, we assume that θi > −b1 for every jurisdiction and every possible shock real-
ization. This guarantees positive baseline emissions and thus that the emission regulation
problem at hand is non-trivial.

Because we are considering the case of a uniformly-mixed stock pollutant, environmental
damages are a function of aggregate emissions Q = ∑

i∈I qi. For simplicity, we assume that
9Considering non mean-zero shocks does not alter our results.
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each jurisdiction incurs the same damages from pollution

D(Q) = d0 + d1Q+ d2

2 Q
2, with d0, d1, d2 ≥ 0. (4)

In sum, jurisdictions are identical up to size and shock.

Cap selection. We assume that risk-neutral jurisdictions do not anticipate linkage and that
jurisdictional caps on emissions (ωi)i∈I are set non-cooperatively. That is, jurisdiction i ∈ I
maximizes its net expected benefits operating its quantity regime under autarky, taking other
jurisdictions’ cap levels Ω−i = ∑

j∈I−i
ωj as given. The Cournot-Nash jurisdictional caps thus

satisfy, ∀i ∈ I
ωi

.= arg max
ωi≥0

E
{
Bi(ωi; θi)−D (ωi + Ω−i)

}
. (5)

In particular, jurisdictional caps are proportional to jurisdictional size, such that, ∀i ∈ I

ωi = A1 · ψi, where A1 = b1 − d1

b2 + d2ΨI
> 0 (6)

where ωi measures the non-cooperative abatement effort (we assume b1 > d1) and ΨI =∑
i∈I ψi is the aggregate jurisdictional size.10 Notice that the aggregate cap corresponds to

Ω = A1 ·ΨI . To facilitate the comparison of outcomes under autarky and linkage, we assume
that jurisdictional caps are upheld in both cases, i.e. fixed once and for all, and not part of
the linkage negotiation process.11 Controlling for aggregate emission levels and associated
environmental damages allow us to isolate the pure gains from linkage under uncertainty.

The following only considers interior equilibria and below we describe two types of interior
equilibria that will serve as references throughout.12

Autarkic equilibria. Under autarky, each jurisdiction must comply with its domestic cap
ωi. When jurisdiction i’s domestic cap is binding, i.e. when θi ≥ b2

ψi
ωi−b1, the autarkic permit

10Appendix C provides the derivations of jurisdictional caps and further shows that our results are unal-
tered under other cap selection mechanisms (provided that expected jurisdictional autarkic prices are equal
across jurisdictions). Appendices are ordered with respect to the natural order of the proofs in the main text.

11The effects that the anticipation of linkage can have on cap selection and linkage profitability, first
highlighted by Helm (2003), are discussed and illustrated in Appendix C. In game-theoretic terms, we thus
consider a game with no spillovers.

12By solely considering interior equilibria, our modelling framework is consistent with the standard ap-
proach to comparing price and quantity instruments. See Goodkind & Coggins (2015) for extensions account-
ing for possible corner solutions. Under autarky for instance, when i’s domestic cap happens to be slack, i’s
autarkic permit price is zero and i’s emissions level is q̄i.
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price in jurisdiction i is p̄i = b1−b2A1+θi. Notice that all jurisdictions face the same expected
autarkic permit price p̄ = b1 − b2A1. Jurisdictions with positive (resp. negative) shock real-
izations will face an autarkic price higher (resp. lower) than p̄. When jurisdictional autarkic
prices differ, the aggregate abatement effort is not efficiently apportioned among jurisdic-
tions. In particular, overall abatement cost-efficiency could be improved upon by allowing
some share of the overall abatement effort to be reallocated from relatively high-shock to
relatively low-shock jurisdictions. As shown below, linkage is beneficial for all parties as it
eliminates the price difference by allowing interjurisdictional reallocation of abatement efforts.

Bilateral linkage equilibria. Bilateral linkages between two jurisdictions constitute the
very basic elements of our subsequent analysis of multilateral linkage. Without loss of gener-
ality, consider a bilateral link between jurisdictions i and j in I×I−i and call it {i, j}-linkage.
An interior {i, j}-linkage equilibrium consists of the triple (p{i,j}, q{i,j},i, q{i,j},j) where p{i,j}
is the equilibrium price for fungible permits on the linked market {i, j} and q{i,j},i denotes
equilibrium emission levels in jurisdiction i, and vice versa for j. In particular, the interior
{i, j}-linkage equilibrium price satisfies

p{i,j} = b1 − b2A1 + Θ{i,j} = ψip̄i + ψj p̄j
ψi + ψj

, where Θ{i,j} = ψiθi + ψjθj
ψi + ψj

(7)

is the size-averaged shock affecting the linked system {i, j}. Notice, the linked permit price
is the size-weighted average of jurisdictional autarkic prices. In any linkage, p{i,j} is therefore
closer to the autarkic price of the relatively bigger jurisdiction. The reallocation in abate-
ment efforts consecutive to {i, j}-linkage are such that jurisdictional marginal benefits are
equalized and the aggregate constraint on emissions Ω{i,j} = ωi + ωj is met. In particular,
net jurisdictional demands for permits under {i, j}-linkage are such that

{i, j}-linkage:


q{i,j},i − ωi = ψi

b2
(θi −Θ{i,j}) = ψiψj

b2 (ψi + ψj)
(θi − θj),

q{i,j},j − ωj = ψj
b2

(θj −Θ{i,j}) = ψiψj
b2 (ψi + ψj)

(θj − θi).
(8)

Linkage eliminates the post-shock wedge between autarkic prices, the magnitude of which is
measured by |θi − θj|. In particular, for given shock realizations, the high-shock jurisdiction
will ‘import’ permits since these have higher value there relative to the low shock jurisdiction
‘exporting’ the permits. In essence, bilateral linkage increases the effective cap in the high-
shock jurisdiction and reduces that of the low-shock jurisdiction by the same amount, thereby
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leaving the aggregate emissions cap Ω{i,j} unchanged.

In this framework, the difference between jurisdictional net benefits under {i, j}-linkage minus
the net benefits under autarky corresponds to the jurisdictional gross gains from the bilateral
link. We denote these as δ{i,j},i and δ{i,j},j. As shown in Appendix A.2

δ{i,j},i = b2

2ψi
(q{i,j},i − ωi)2, and δ{i,j},j = b2

2ψj
(q{i,j},j − ωj)2, (9)

and further plugging in Equation (8) gives

δ{i,j},i =
ψiψ

2
j

2b2(ψi + ψj)2 (θi − θj)2, and δ{i,j},j = ψjψ
2
i

2b2(ψi + ψj)2 (θi − θj)2. (10)

Aggregate gross gains from {i, j}-linkage amounts to

∆{i,j} .= δ{i,j},i + δ{i,j},j = ψiψj
2b2(ψi + ψj)

(θi − θj)2. (11)

Taking expectations then yields

E{∆{i,j}} = ψiψj
2b2 (ψi + ψj)

(
σ2
i + σ2

j − 2ρijσiσj
)
≥ 0. (12)

We observe that the aggregate gross gain is (i) positive as long as jurisdictional shocks are
imperfectly correlated and jurisdictional volatility levels differ, for otherwise the two jurisdic-
tions are identical in our framework and there are no gains from linkage,13 (ii) increasing in
both jurisdictional volatilities and sizes, (iii) decreasing in interjurisdictional correlation and
bigger when jurisdictional shocks are negatively correlated, and (iv), for a given aggregate
size, maximal when jurisdictions have equal sizes.

We also observe that the aggregate gross gain is apportioned between partnering jurisdictions
in inverse proportion to size. Formally, E{δ{i,j},i}/E{δ{i,j},j} = ψj/ψi. This is so because the
distance between the autarkic price and the linkage price is relatively larger in the smaller
jurisdiction. Considering the alternative interpretation where ψi captures jurisdiction i’s
abatement technology level, the jurisdiction with a high-cost abatement technology gains
relatively more from the link.

13Notice, when jurisdictional shocks are perfectly correlated, differences in the shocks volatility generate
gains from linkage. Then, the bigger the difference in volatility levels, the bigger the gains from the link.
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3 Multilateral linkage

3.1 The language of multilateral linkage

Let C denote the set of possible linkage coalitions in I, where a linkage coalition is defined as
any subset of I with cardinality of at least 2; singletons are not linkage coalitions. Formally,
C .= {C : C ⊆ I, |C| ≥ 2} with cardinality |C| = 2n−n− 1. Let also S be the set of coalition
structures, where a coalition structure is defined as a partition of I.14 That is, S is a coalition
structure i.f.f. ∅ /∈ S, ∪C∈SC = I, and ∀(C, C ′) ∈ S × S−C, C ∩ C ′ = ∅.

For instance, with a set of three jurisdictions I = {i, j, k}, there are 5 different coalition
structures:

{{i}, {j}, {k}}︸ ︷︷ ︸
complete autarky

, {{i, j, k}}︸ ︷︷ ︸
global market

and
{{i, j}, {k}}, {{i, k}, {j}}, {{j, k}, {i}}︸ ︷︷ ︸

incomplete linkages
.

The first and second coalition structures are the complete autarky and the global market,
respectively. Coalition structures in which there are singletons, i.e. some jurisdictions remain
in autarky, are referred to as incomplete linkage, e.g. {{i, k}, {j}}.

With a group of four jurisdictions I = {i, j, k, l}, richer variation in coalition structures
emerge consisting of multiple linkage coalitions, e.g. {{i, j}, {k, l}}. Coalition structures
in which linkage coalitions coexist are referred to as polycentric structures. Notice that
polycentric structures may also contain singletons and therefore exhibit incomplete linkage.

Further, let Si denote the set of coalition structures containing exactly i ≤ n coalitions,
whose cardinality is given by the Stirling number of the second kind

{
n
i

}
. The cardinality of

S is thus given by the nth Bell number given n agents, that is

|S| .=
n∑
i=1
|Si| =

n∑
i=1

{
n

i

}
=

n∑
i=1

1
i!

i∑
j=0

(−1)i−j
(
i

j

)
jn. (13)

As shown in Table 1, the difference in the number of possible linkage coalitions and coalition
14For the sake of expositional clarity and consistently with the language of cooperative game theory,

coalition structures can only comprise disjoint coalitions. This is without loss of generality and our machinery
can characterize situations where jurisdictions belong to several coalitions. In other words, this could represent
an indirect linkage as defined in Jaffe et al. (2009) and Tuerk et al. (2009).
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structures grows exponentially as the number of jurisdictions increases.

Number of jurisdictions 3 4 5 10 15
Number of linkage coalitions 4 11 26 1,013 32,752
Number of coalition structures 5 15 52 115,975 1,382,958,545

Table 1: Number of linkage coalitions and coalition structures

Equipped with this language, we next present our general model of multilateral linkage.

3.2 Multilateral linkage equilibria

For all C in C, we call C-linkage the formation of a linked market for permits between all
jurisdictions in C. By extension, I-linkage corresponds to the global market. An interior
C-linkage equilibrium consists of the (|C|+ 1)-tuple (pC, (qC,i)i∈C), where pC is the equilibrium
price in the linked market and qC,i denotes jurisdiction i’s equilibrium emissions level. The
equilibrium is fully characterized by the equalization of marginal benefits across partnering
jurisdictions (to the C-linkage equilibrium price) and the linked market clearing condition
such that, ∀i ∈ C

b1 + θi −
b2

ψi
qC,i = pC, and

∑
i∈C

qC,i = ΩC .= A1 ·ΨC. (14)

After rearranging, the C-linkage equilibrium price can be expressed as the size-weighted
average of jurisdictional autarkic prices, that is

pC = b1 − b2A1 + ΘC = Ψ−1
C
∑
i∈C

ψip̄i, with ΘC .= Ψ−1
C
∑
i∈C

ψiθi. (15)

Relative to jurisdictional caps, post-trade deviations in jurisdictional emissions (or jurisdic-
tional net demands for permits) are proportional to both jurisdictional size and the difference
between the jurisdictional autarkic price and the prevailing linkage price so that, ∀i ∈ C

qC,i − ωi = ψi
b2

(p̄i − pC). (16)

Ex post, jurisdiction i imports permits under C-linkage i.f.f. p̄i > pC, i.e. the linkage price
happens to be lower than its autarkic price – all else equal, this is equivalent to an increase
in jurisdiction i’s effective cap.
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Relative to autarky, the gains from C-linkage accruing to jurisdiction i ∈ C are

δC,i = b2

2ψi
(qC,i − ωi)2 = ψi

2b2
(p̄i − pC)2, (17)

and always non-negative. In other words, every partnering jurisdiction in any C-linkage is
always at least as well off as compared to autarky. Formally,

Lemma 3.1. Under C-linkage, the expected economic surplus accruing to jurisdiction i ∈ C
is proportional to both its size and the square of the difference in autarkic and C-linkage prices
(in expectations) and given by E{δC,i} = ψi

2b2
E
{

(p̄i − pC)2
}
.

Proof. The proof is relegated to Appendix A.2.

Controlling for jurisdictional size, jurisdiction i’s gross gain from C-linkage is hence increasing
in E {(p̄i − pC)2} and is positive – provided that the shocks’ realization is such that its autarkic
price differs from the C-linkage price.15 Controlling for the difference between C-linkage and
i’s autarkic prices, jurisdiction i’s gross gain from C-linkage is proportional to its size. Notice,
as long as per-size abatement efforts of all partnering jurisdictions in C are identical, it holds
that

p̄i − pC = θi −ΘC. (18)

Inserting the above in (17) and using the definition of ΘC, we obtain

δC,i = ψi
2b2Ψ2

C

( ∑
j∈C−i

ψj (θi − θj)
)2

. (19)

Expanding this and taking expectations then gives

E{δC,i} = ψi
2b2Ψ2

C

( ∑
j∈C−i

ψ2
j

(
σ2
i + σ2

j − 2ρijσiσj
)

+
∑

(j,k)∈C−i×C−i

ψjψk
(
σ2
i + ρjkσjσk − ρikσiσk − ρijσiσj

))
.

(20)

The above expression, however, is relatively cumbersome and does not lend itself to an easy
interpretation. In general, when it comes to multilateral linkage, it will be more convenient
to express C-linkage quantities as a function of its internal bilateral linkage quantities.

15In a recent theoretical study of the optimal scope of price and quantity policies, Caillaud & Demange
(2016) observe a similar result but limit their analysis to the analog of our aggregate gross gains.
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By an argument of symmetry and with the convention that for all i ∈ I, ∆{i,i} = 0, Appendix
A.2 shows that gains from C-linkage accruing to jurisdiction i ∈ C write

δC,i = Ψ−2
C

∑
j∈C−i

{
ΨC−i

(ψi + ψj)∆{i,j} −
ψi
2

∑
k∈C−i

(ψj + ψk)∆{j,k}
}
. (21)

Summing over all i ∈ C yields our first central result

Proposition 3.2. Any C-linkage can be decomposed into its internal bilateral links, that is

∆C .=
∑
i∈C

δC,i = (2ΨC)−1 ∑
(i,j)∈C2

(ψi + ψj)∆{i,j}. (22)

The number of such internal bilateral links is triangular and equals
(
|C|+1

2

)
.

Proof. The proof is relegated to Appendix A.3.

The aggregate surplus from C-linkage thus writes as a size-weighted function of all surpluses
from bilateral links between jurisdictions belonging to the linkage coalition C.

Finally, we can make the following observation regarding price volatility in a C-linkage equi-
librium, which is a generalization of Proposition 2 in Doda & Taschini (2016).

Observation 1. Any C-linkage is conducive to reduced size-averaged permit price volatil-
ity, i.e. V {pC} ≤ Ψ−1

C
∑
i∈C ψiV {p̄i}. This unconditionally reduces volatility in relatively

high-volatility jurisdictions but may increase volatility in relatively low-volatility jurisdictions,
especially when the latter are relatively small.

Proof. The proof is relegated to Appendix A.1.

Let us now characterize the effects of linking two disjoint linkage coalitions.

3.3 Linkage between two coalitions

For all C ∈ C and C ′ ⊂ C, denote by C ′′ the complement of C ′ in C, i.e. C = C ′ ∪ C ′′ and
C ′ ∩ C ′′ = ∅. This is without loss of generality. Unpacking Equation (22) then gives

∆C = Ψ−1
C

(
ΨC′∆C′ + ΨC′′∆C′′ +

∑
(i,j)∈C′×C′′

(ψi + ψj)∆{i,j}
)
. (23)
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Notice, while in set theoretic terms it holds that C = C ′ ∪ C ′′, in terms of aggregate surplus
from system interactions it holds that

∆C = ∆C′ + ∆C′′ + ∆C′!C′′ , (24)

where ! is a relation operator denoting linkage. That is, the term ∆C′!C′′ captures the
gains of connecting the two linkage coalitions C ′ and C ′′. Equipped with this definition, one
can state our second central result that

Proposition 3.3. Linkage is a superadditive mechanism satisfying

E{∆C′!C′′} = Ψ−1
C

( ∑
(i,j)∈C′×C′′

(ψi + ψj)E{∆{i,j}} −ΨC′′E{∆C′} −ΨC′E{∆C′′}
)
≥ 0. (25)

Proof. The proof is relegated to Appendix A.4.

In words, the aggregate expected gross gain from the union of disjoint coalitional systems is
no less than the sum of the coalitional systems’ separate expected gross gains. We provide
an intuitive proof for the non-negative sign of Equation (25). Crucially, it follows from the
definition and beneficial nature of bilateral linkage, here considered between two groups of
interconnected markets for permits, where in particular

E{∆C′!C′′} = ΨC′ΨC′′
2b2ΨC︸ ︷︷ ︸

PSE

(
V{pC′}+ V{pC′′}︸ ︷︷ ︸

VE

−2Cov{pC′ ; pC′′}︸ ︷︷ ︸
DE

)
≥ 0. (26)

In comparison with bilateral linkage between two jurisdictions (Doda & Taschini, 2016), the
pair size effect (PSE) is of larger magnitude, especially when ΨC′ ∼ ΨC′′ . However, this is
compensated by lower price volatility effect (VE) as discussed in Observation 1 above. It is
more difficult to say something relevant regarding the dependency effect (DE) at this stage.

There are three crucial implications connected to Proposition 3.3 that we illustrate with the
help of the following corollaries.

Corollary 3.4. Multilateral linkage satisfies monotonicity, that is

∀(C, C ′) ∈ C2, C ′ ⊆ C ⇒ E{∆C′} ≤ E{∆C}. (27)

Therefore, I-linkage is the coalition with highest aggregate payoff.

Proof. Follows from superadditivity and since singletons have value zero.
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In words, if one were to choose one and only one linkage coalition, I-linkage would be the
most advantageous overall. Superadditivity, in fact, provides the stronger result that

Corollary 3.5. I-linkage is the socially optimal coalition structure, that is ∀S ∈ S

E{∆I} ≥ E{∆S}. (28)

Proof. Let S = {C1, . . . , C|S|} ∈ S−I . By definition and linearity, it holds that

∆I .= ∆S +
∑

1≤i<j≤|S|
∆Ci!Cj

, where ∆S =
|S|∑
i=1

∆Ci
. (29)

Taking expectations then concludes.

Therefore, I-linkage is the coalition structure conducive to the highest aggregate cost savings
in meeting the aggregate constraint on emissions Ω. In words, from a global perspective a
single linkage coalition consisting of all jurisdictions linked together outperforms any possible
group of disjoint linkage coalitions, and is intimately related to the globally efficient coalition
structure we define later.16

It is also of interest to characterize the special case where a linkage coalition is linked to
an individual jurisdiction (singleton) as it clarifies the distribution of the overall gross gains
from the link between partnering jurisdictions. In this respect, one has that

Corollary 3.6. For all C ∈ C and i ∈ I−C, unitary accretion is characterized by

E{∆C!{i}} .= E{∆C∪{i}} − E{∆C} = ΨC∪{i}Ψ−1
C E{δC∪{i},i} > E{δC∪{i},i} ≥ 0. (30)

Proof. Follows from Equation (25) with C ′ = C and C ′′ = {i}. An alternative direct proof is
also presented in Appendix A.5.

In words, linkage jurisdiction i /∈ C to the linkage coalition C generates an overall gross gain
of E{δC∪{i},i}+ψiΨ−1

C E{δC∪{i},i} where the first term accrues to jurisdiction i and the second
is shared among jurisdictions in C. Put otherwise, jurisdictions in C get a share ψiΨ−1

C∪{i} of
the overall gross gain E{∆C!{i}}. Finally note that our analysis straightforwardly extends
to cases where more than two linkage coalitions merge. In particular, we can characterise
the gross gains accruing to each separate linkage coalition. For any C = ⋃

i Ci where ∀i 6= j,
16Linkage costs are key to this definition. See equation (42).
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Ci ∩ Cj = ∅, surplus accruing to linkage coalition Ci in forming C reads

∆C,Ci
= Ψ−2

C
∑
C′∈C−Ci

{
ΨC−Ci

(
ΨCi

+ ΨC′
)
∆Ci!C′ −

ΨCi

2
∑

C′′∈C−Ci

(
ΨC′ + ΨC′′

)
∆C′!C′′

}
. (31)

An analytical example with three jurisdictions

There are three jurisdictions denominated by i, j and k and I = {i, j, k}. Gross gains from
I-linkage write as functions of internal bilateral linkage gross gains, in particular for the
aggregate gross gain

∆I = (ψi + ψj)∆{i,j} + (ψi + ψk)∆{i,k} + (ψj + ψk)∆{j,k}
ψi + ψj + ψk

, (32)

as well as for jurisdictional gross gains, e.g. for jurisdiction i

δI,i = ψj + ψk
(ψi + ψj + ψk)2

(
(ψi + ψj)∆{i,j} + (ψi + ψk)∆{i,k} − ψi∆{j,k}

)
. (33)

We consider the following special case (Case 1 in Appendix B) where jurisdictional charac-
teristics are such that jurisdictions are uncorrelated, have same size but different volatilities,
that is

Case 1:


ψi = ψj = ψk = ψ > 0,

ρij = ρik = ρjk = 0,

σk = σ > 0, σi = xσ, σj = yσ (x, y ≥ 0).

(34)

In this case, aggregate expected gross gain from possible bilateral linkages read

E{∆{i,j}} = ψσ2

4b2
(x2 + y2), E{∆{i,k}} = ψσ2

4b2
(x2 + 1), and E{∆{j,k}} = ψσ2

4b2
(y2 + 1), (35)

while aggregate gross gains generated by the trilateral link amount to

E{∆I} = ψσ2

3b2
(x2 + y2 + 1). (36)

It is simple to check that I-linkage is the most advantageous linkage coalition in aggregate.
Yet, it is not necessarily the most preferred outcome jurisdictionally speaking. For instance,
jurisdiction i is better off linking with j only rather than with both j and k if it holds that

E{δ{i,j},i} ≥ E{δI,i} ⇔ 5y2 ≥ 7x2 + 4, (37)
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which e.g. holds for (x, y) = (1, 2) or (2, 3). One can thus state that

Observation 2. Although I-linkage is the most efficient outcome from an aggregate per-
spective, it may not be the most preferred outcome jurisdictionally speaking.

Proof. A number of examples are provided in Appendix B.

By extension to the general case and in the absence of interjurisdictional transfers, the global
market may not naturally emerge as some jurisdictions may oppose it and prefer to form
smaller linkage coalitions. This, however, requires that jurisdictions’ preferences are aligned
in terms of linkage coalitions. In our example, {i, j}-linkage will endogenously form provided
that it is also the most preferred option for jurisdiction j, that is if it holds that

E{δ{i,j},j} ≥ E{δI,j} ⇔ 5x2 ≥ 7y2 + 4. (38)

Notice, however, Equations (37) and (38) cannot hold simultaneously. More generally,

Observation 3. Jurisdictional preferences in terms of linkage coalitions are non-concordant.
For instance, when jurisdiction i prefers I-linkage over {i, j}-linkage, then jurisdiction j

prefers {i, j}-linkage over I-linkage.

Proof. The proof is relegated to Appendix B.

This indicates that one jurisdiction’s preferred linkage coalition cannot simultaneously be
the favourite coalition for every jurisdiction thereof. To help intuition, fix (x, y) = (2, 3). In
this case, jurisdictional linkage preferences are ordered such that


{i, j}-linkage �i I-linkage �i {i, k}-linkage �i {j, k}-linkage

I-linkage �j {i, j}-linkage �j {j, k}-linkage �j {i, k}-linkage

{j, k}-linkage �k I-linkage �k {i, k}-linkage �k {i, j}-linkage

(39)

Even without considering linkage costs, this provides a reason why linkage negotiations may
fall short of a complete link in the short run (at least when interjurisdictional transfer schemes
are infeasible or prove unwieldy).
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4 Multilateral linkage with costs

In the presence of costs associated with the formation of linkage coalitions, it might well
be that a coalition structure different from the global market yields the highest aggregate
payoff, net of costs. This section addresses two issues. First, given linkage costs, we explore
the nature of globally efficient coalition structures, or GECS for short. Second, we compare
the ability of alternative inter-jurisdictional cost-sharing arrangements in making GECS (or
any other desirable coalition structures) Pareto-improving with respect to autarky.

4.1 Efficient coalition structure with linkage costs

Definition of linkage costs. Costs associated with the formation of a linkage coalition have
two distinct variable components: (i) linkage implementation costs capturing that the bigger
the potential jurisdictions involved, the larger are the implementation-related administrative
costs and the costs of harmonizing the rules of the previously independent systems; and (ii)
linkage negotiation costs reflecting that costs in forging and establishing climate policy linkage
agreements are increasing in the number of participating jurisdictions.17 These considerations
are embedded in the following cost structure such that, ∀C ∈ C

κ
(
C; ε0, ε1

) .= ε0 ·ΨC + ε1 · |C|2, (40)

where (ε0, ε1) ∈ R2
+ are scaling parameters for the implementation and negotiation costs,

respectively. As discussed in the introduction, negotiation costs relate to the minilaterism-
polycentrism political dimension of linkage negotiations. We assume that these costs are
convex. This dimension is also mechanically captured in the implementation costs via ΨC,
but these further reflect that it is more costly for larger jurisdictions to implement linkage.
Let us now characterize GECS for given cost parameters.

Globally Efficient Coalition Structure (GECS). For given linkage cost parameters
(ε0, ε1) ∈ R2

+, net aggregate benefits from any coalition structure S ∈ S write

∆̃S(ε0, ε1) .= ∆S −K
(
S; ε0, ε1

)
(41)

17Fixed per-link sunk costs are not considered as they are blind to both the composition of linkage
coalitions and the architecture of coalition structures, thereby unable to discriminate between them.
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where by definition, aggregate linkage costs are such that K
(
S; ε0, ε1

) .= ∑
C∈S κ

(
C; ε0, ε1

)
.

GECS is denoted by S∗ and therefore satisfies

S∗(ε0, ε1) .= arg max
S∈S

〈
E
{

∆̃S(ε0, ε1)
}〉
. (42)

Note that GECS depends on cost parameters. Notice also, while our definition of costs
in Equation (40) is exogenously imposed, costs associated with the formation of coalition
structures are endogenous to the optimization programme (42). Obviously S∗(0, 0) = I. On
the one hand, for a pair of cost parameters low enough, linkage may remain superadditive
and GECS correspond to the global market. On the other hand, for a pair of cost parameters
high enough, linkage may become subadditive and GECS correspond to complete autarky.
In other words, it is precisely the presence of linkage costs that constitutes an impediment
to the global market and robs linkage of superadditivity.

On the linkage benefit side, Proposition 3.3 and superadditivity indicate that coalition struc-
tures with a small number of large linkage coalitions fare relatively better in aggregate terms
as compared to more fragmented linkage structures. On the linkage cost side, we draw the
attention to the asymmetric nature of the two cost components: a high (resp. low) ε0/ε1

ratio favours coalition structures consisting of many and small (resp. a few and large) con-
stitutive linkage coalitions. On the face of it, it is hard to tell which architecture of linkage
coalitions are most likely to emerge as GECS for given cost parameters, as this depends
on economic gains from linkage and ultimately on jurisdictional characteristics. For cost
parameters such that linkage is neither superadditive nor subadditive, Section 5 empirically
explores the nature of GECS in terms of polycentricity and incompleteness of linkage.

4.2 Alternative inter-jurisdictional cost-sharing arrangements

Definition of cost-sharing arrangements. For any coalition C ∈ C, a cost-sharing
arrangement is a collection of non-negative weights

(
φC,i

)
i∈C

such that ∑i∈C φC,i = 1 where
φC,i is the share of the aggregate cost of forming coalition C incurring to jurisdiction i ∈ C.18

For any given inter-jurisdictional cost-sharing arrangement, net jurisdictional gains from
forming any coalition C ∈ C write, ∀i ∈ C

δ̃C,i(ε0, ε1) .= δC,i − φC,i · κ
(
C; ε0, ε1

)
. (43)

18Notice, cost-sharing arrangements can be assimilated to inter-jurisdictional transfer schemes.
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We consider nine alternative interjurisdictional cost-sharing arrangements that are listed in
Table 2. R1 is an egalitarian rule where all jurisdictions incur the same costs. Linkage costs
can also be shared in proportion to size or inverse of size as under R2 and R3, respectively.
R4 is a mixed rule where implementation costs are distributed in proportion to size and
negotiation costs are evenly apportioned among jurisdictions. Under R5 jurisdictions incur
costs in proportion to what they gain from the coalition. In a fashion akin to the Shapley
value, the more the presence of one jurisdiction is generative of gains for the coalition as a
whole, the smaller the share of linkage costs it must incur; this is R6. In other words, the
more desirable one jurisdiction is, the less it contributes to paying linkage costs. Inversely,
R7 considers the case where the more desirable one jurisdiction is, the more it contributes to
linkage cost payment. Finally, R8 and R9 replicate R6 and R7 in terms of net contribution.

Is GECS Pareto-improving w.r.t. autarky? Once GECS is known, one must check
whether it is incentive-compatible for every jurisdiction. Incentive-compatibility is defined
in a weak sense requiring that jurisdictions are at least as well off as under autarky. In other
words, incentive-compatibility requires that jurisdictional gains, net of linkage costs, are
non-negative for each jurisdiction. Formally, for given linkage cost parameters (ε0, ε1) ∈ R2

+,
GECS will be said Pareto-improving with respect to autarky if it holds that ∀C ∈ S∗(ε0, ε1)
and ∀i ∈ C

E
{
δ̃C,i(ε0, ε1)

}
≥ 0. (44)

Section 5 compares the nine cost-sharing arrangements in their ability to implement GECS,
that is to make GECS Pareto-improving w.r.t. autarky.

An analytical example with three jurisdictions (continued)

As in Section 3.3, I = {i, j, k} and we compare I-linkage with {i, j}-linkage. To fix ideas,
aggregate costs in forming I-linkage and {i, j}-linkage respectively read


κ
(
I; ε0, ε1

)
= ε0 + 3 · (ψi + ψj + ψk) · ε1,

κ
(
{i, j}; ε0, ε1

)
= ε0 + 2 · (ψi + ψj) · ε1.

(45)

In Case 1 described in (34), for x, y > 1, {i, j}-linkage brings about higher aggregate gross
gains than both {i, k}-linkage and {j, k}-linkage, while these three bilateral linkages have
identical formation costs. From an aggregate perspective, {i, j}-linkage is thus the preferred
bilateral linkage on net. Moreover, {i, j}-linkage is preferred to I-linkage from a global
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perspective when it holds that

E{∆I} − κ
(
I; ε0, ε1

)
≤ E{∆{i,j}} − κ({i, j}; ε0, ε1) ⇔ σ2(x2 + y2 + 4) ≤ 60b2ε1, (46)

that is, provided that ε1 is high enough. Now note that {i, j}-linkage remains preferable in
aggregate provided that

E{∆{i,j}} − κ
(
{i, j}; ε0, ε1

)
≥ 0 ⇔ ψσ2(x2 + y2) ≥ 4b2(ε0 + 4ψε1). (47)

For given cost parameters, when it is the case that {i, j}-linkage generates the highest ag-
gregate net gains while remaining profitable, it corresponds to GECS. If we fix (x, y) = (2, 3)
and ε0 = 0, this is the case when 17b2σ2

60 ≤ ε1 ≤ 13b2σ2

16 .

GECS is Pareto-improving with respect to autarky if no jurisdiction is worse off within the
coalition structure as compared to autarky. In turn, this will depend on how aggregate linkage
costs are shared among jurisdictions. In the example above, {i, j}-linkage is implementable
if it holds that 

E{δ{i,j},i} − φ{i,j},i · κ
(
{i, j}; ε0, ε1

)
≥ 0, and

E{δ{i,j},j} − φ{i,j},j · κ
(
{i, j}; ε0, ε1

)
≥ 0,

(48)

where φ{i,j},i + φ{i,j},j = 1. For instance, when costs are shared equally or according to size,
{i, j}-linkage is implementable if ε1 ≤ 13b2σ2

16 .

5 Quantitative illustration

5.1 A five-jurisdiction example

In this section we illustrate the quantitative implications of our theory using historical data
to discipline the selection of key parameters which determine the value of various linkage
arrangements. We adopt a descriptive and combinatorial approach to multilateral linkages
among five jurisdictions, namely China (CHN), the United States (USA), the block of Euro-
pean countries who are currently the members of EU-ETS (EUR), Korea (KOR) and Egypt
(EGY). We assume that there is a hypothetical ETS in each jurisdiction which covers all
carbon emissions in that jurisdiction, and that jurisdictional emission caps are set so that
the expected autarkic permit prices are equal across jurisdictions. Our calibration strategy,
described in detail in Doda & Taschini (2016), allows us to pin down jurisdiction size and
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shocks properties. Specifically, Table 3 provides jurisdictional sizes, where China’s market
size is normalized to 100, and the observed historical volatilities in each market. Table 4 lists
the pairwise correlations of the shocks affecting the jurisdictions in the sample.

We emphasize that the sample of jurisdictions we select is deliberate. One of the jurisdictions
(CHN) is very large relative to the rest. There are two other jurisdictions which are large and
approximately of equal size (USA and EUR). The remaining two are relatively small (KOR
and EGY), and substantially more volatile than the larger jurisdictions. Finally, EGY is
negatively correlated with all other jurisdictions to varying degrees. Thus, our sample spans
the diversity that is present in the data regarding the key determinants of gains from linkage
highlighted by our theory. This enables us to illustrate the novel and often unexpected
implications of multilateral linkage.

Zero linkage costs

When linkage costs are zero, our theoretical results indicate that the global market generates
the largest value.19 However, as we have shown, the global market may not be the most
preferred coalition for each jurisdiction. Table 5 illustrates this result by listing the most and
second most preferred coalitions for each jurisdiction.

Table 5 shows that the most preferred coalition of the largest jurisdiction CHN is the global
market whereas every other jurisdictions’ most preferred coalition is a bilateral linkage with
CHN. Jurisdictions’ preferences are non-concordant even when considering the second most
preferred coalition. Table 5 shows that China’s second most preferred coalition does not
contain EGY while EGY is a member of every other jurisdiction’s second most preferred
coalition. In light of the bilateral analysis in Doda & Taschini (2016), one may expect that
a jurisdiction’s top coalition choices involve partners with high variance and low correlation.
This result demonstrates that the mechanism determining jurisdictional gains under mul-
tilateral linking is more subtle. The subtlety also applies in the case of size. If the most
preferred coalitions of KOR and EGY, i.e. those with CHN, were ruled out exogenously, the
second most preferred coalition would include EGY for KOR, and KOR for EGY. Note that
this despite the fact that USA and EUR are in principle available to link with. Finally,
notice that the most and second most preferred coalitions of USA and EUR include China
but exclude each other. These findings indicate that non-concordance of linkage preferences

19At this level of abstraction value is measured in arbitrary units but its magnitude is comparable across
jurisdictions, linkage coalitions, and coalition structures. See Doda & Taschini (2016) for details.
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across jurisdictions is likely to be a contributing factor to observed infrequency of linkages
in the real world.

More generally, Figure 1 displays jurisdictional gross gains for every possible linkage coalition
as a function of coalition’s cardinality for CHN, USA and EGY. It is clear that the global
market can be far from being the most attractive linkage coalition for a jurisdiction.

Two separate preference clusters can be identified for USA in the left panel of Figure 1: an
upper cluster where CHN is in the linkage coalition and a lower cluster where it is not. That
is, it is in the interest of USA to form a linkage coalition that contains CHN. Even though
EUR is not in Figure 1 it displays a similar pattern with a smaller distance between the two
clusters, suggesting ‘dispersion’ in terms of linkage gain is lower for smaller jurisdictions.

For CHN, three such clusters exist as illustrated in the middle panel of Figure 1: an upper
cluster where CHN partners up with the two other large jurisdictions (USA and EUR), a
middle cluster where CHN is linked with either USA or EU but not both, and a lower cluster
where CHN is only linked to small jurisdictions (KOR and EGY). Potential gains for CHN
are dispersed across these linkage coalitions. This suggests that CHN should aim to form
linkage coalitions with large partners and ideally the global market.

Notice that no such clusters exist for the smallest jurisdiction EGY as illustrated in the right
panel of Figure 1. Even though EGY prefers to link with large jurisdictions, the dispersion
of jurisdictional gains across linkage coalitions is rather small. This suggests that a clear
ranking of the linkage coalitions for small jurisdictions is harder.

Finally we observe that the linkage coalitions generating high gross gains are also those that
are the most costly to form because they involve big partners or many partners, or both.
Therefore, it is not obvious prima facie how this trade-off unfolds in determining the most
desirable linkage coalitions and coalition structures net of costs.

Positive linkage costs

Accordingly, we introduce linkage costs. This requires us to parametrize the cost function in
Equation (40) which is difficult even at this level of abstraction because there is very little
empirical guidance to select the pair (ε0, ε1). To discipline the parametrization, we report
three sets of results which are comparable in the sense that the most costly coalition structure,
i.e. that where individual jurisdictions negotiate a global market, generates costs equal to
75% of the benefits delivered by the global market. Notice that this does not identify (ε0, ε1)
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individually. To pin down a unique pair, we further assume that a share z of the linkage
costs are implementation costs, and report results for z ∈ {0, 0.5, 1}. In particular, the
aggregate gross gain from the global market which includes all five jurisdictions is 0.0473
with cardinality 5 and aggregate size 202.738. Our assumption implies that with z = 1 there
are only implementation costs of linking and (ε0, ε1) is uniquely determined (1.75 · 10−4, 0).
Conversely, with z = 0, there are only negotiation costs of linking and we have the parameter
pair (0, 1.42 · 10−3). Finally, with z = 0.5 the parameter pair is (8.75 · 10−5, 7.01 · 10−4).

Table 6 presents the results of combining these cost assumptions with the nine cost-sharing
arrangements introduced in Section 4. In particular, we report the GECS (S∗) and the
attached expected aggregate net gains E{∆̃S∗}. We say that S∗ is blocked by a jurisdiction i
under a rule R#, if i receives negative net benefits, i.e. it is worse off under S∗ than autarky.
Table 6 also reports the blocking jurisdictions, if any, under a given rule.

We first observe that, when z = 1, i.e. only linkage negotiation costs are involved, the globally
efficient coalition structure is given by a linked system among the three largest jurisdictions
on the one hand, and another system consisting of the remaining two smaller jurisdictions on
the other. Notice that the GECS is a polycentric, complete linkage.20 However, only cost-
sharing rules R3 and R5 are consistent with no jurisdiction blocking this efficient structure.
If any other rule were adopted ex ante, KOR would block its linkage coalition with EGY
thereby precluding the implementation of GECS. This highlights the fact that the choice of
the cost-sharing rule ex ante can determine whether GECS constitutes a Pareto-improvement
w.r.t. autarky, i.e. whether GECS is implementable or not.

Second, we observe that when z = 0.5, GECS is unchanged. Notice also that although the
net gains attached to GECS are half those that obtain with z = 1, GECS is now feasible
under cost-sharing rules R1, R4, R5 and R7. This highlights that high aggregate gains from
GECS do not necessarily improve upon its incentive compatibility for jurisdictions involved.
Notice also that KOR is no longer the sole blocking jurisdiction, as EUR and CHN might
also oppose GECS under certain cost-sharing rules.

Third, we observe that when z = 0, i.e. only linkage implementation costs are involved,
GECS corresponds to the global market. However, it is only achievable under R5, and at
least one jurisdiction opposes its implementation depending on the cost-sharing rule chosen
ex ante.

It is noteworthy that among the cost specifications and cost-sharing rules considered in
20If we were to increase cost parameters further, GECS would display incomplete linkage where it is more

beneficial, from an aggregate perspective, that some jurisdictions remain in autarky.
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Table 6, R5 always renders GECS viable. That is, apportioning linkage costs in proportion
to jurisdictional gains from linkage coalitions might facilitate the implementation of efficient
coalition structures. In practice, however, determining the associated jurisdictional cost
shares might not be as straightforward as for simpler rules, e.g. egalitarian or per size.

5.2 Graphical illustration of a ten-jurisdiction example

Finally, we illustrate some of the analytical results presented in the previous sections, noting
that a thorough investigation of multilateral linkage with ten jurisdictions (similar to the
five-jurisdiction case above) is currently underway. With ten jurisdictions, Figure 2 displays
aggregate gross gains for every possible linkage coalition as a function of the coalition’s
cardinality. The upper and lower envelopes join the maximal and minimal aggregate gains
for each coalition’s cardinality, respectively.

The monotonicity and curvature of these two envelopes is informative in two respects. First,
both envelopes are increasing with coalition’s cardinality, which illustrates the monotonicity
of linkage (Corollary 3.4). Second, the upper envelope is concave in coalition’s cardinality
while the lower envelope is convex. This is so because the two envelopes’ location is deter-
mined by jurisdictional sizes. The upper envelope is obtained by considering linkage coalitions
that gradually expand by including the largest jurisdictions, in decreasing size order. The
lower envelope represents linkage coalitions first containing the smallest jurisdictions and
then gradually expanding by integration of jurisdictions in increasing size order.

Concavity of the upper envelope displays the stepwise aggregate economic gains in gradually
expanding the linkage coalition by adding ever smaller jurisdictions inside the coalition.
The converse holds for the lower envelope; in particular, notice the significant jump when
cardinality increases from 9 to 10 jurisdictions, which corresponds to the inclusion of China.
This illustrates by how much, in aggregate terms, China contributes to the global market.
Notice finally that while the two envelopes are determined by jurisdictional sizes, variations in
aggregate gains between these two envelopes are attributable to a combination of jurisdiction-
specific shock properties.
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6 Conclusions

Compared to bilateral linkages, a formal study of multilateral linkages poses numerous chal-
lenges. In this paper, we advance the theory on multilateral linkages by proposing a language
and general theoretical model that allow us to analytically describe multilateral linkages be-
tween ETSs and evaluate the corresponding gains. Every multilateral linkage can be decom-
posed into its internal bilateral linkages. This constitutes our first key result. We also show
that the aggregate expected gain from the union of disjoint coalitions of linked ETSs is no
less than the sum of separate coalitions’ expected gains: linkage is superadditive. Finally, we
generalize the results in Doda & Taschini (2016) by providing an analytical formula for this
gain as a function of coalitions’ sizes and shock characteristics. When we extend the model
by introducing linkage costs that are increasing in both the number and aggregate size of
partnering jurisdictions, we observe that coalition structures different from the global market
may yield higher aggregate gains net of costs. As a consequence, alternative cost-sharing ar-
rangements can make, or break, an efficient coalition structure. This is clearly an area where
additional academic and policy work would be useful.
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Tables & Figures

Table 2: Interjurisdictional cost-sharing arragements

Rule number Share of total costs incurred by jurisdiction i (φC,i)†

R1 |C|−1

R2 ψiΨ−1
C

R3 ΦCψ−1
i

R4 ε0 · ψi + ε1 · |C|
R5 E{δC,i}E{∆C}−1

R6
(
E{∆C} − E{∆C−i

}
)−1
·
(∑

j∈C

(
E{∆C} − E{∆C−j

}
)−1

)−1

R7
(
E{∆C} − E{∆C−i

}
)
·
(
|C| · E{∆C} −

∑
j∈C E{∆C−j

}
)−1

R8
(
E{∆̃C} − E{∆̃C−i

}
)−1
·
(∑

j∈C

(
E{∆̃C} − E{∆̃C−j

}
)−1

)−1

R9
(
E{∆̃C} − E{∆̃C−i

}
)
·
(
|C| · E{∆̃C} −

∑
j∈C E{∆̃C−j

}
)−1

Note: †: except for R4 where the total linkage costs incurring to jurisdiction i are indicated.

Table 3: Calibration results: Size and volatility (ψi and σi)

CHN USA EUR KOR EGY
ψi 100 55.038 38.699 6.645 2.356
σi 0.028 0.019 0.017 0.034 0.050
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Table 4: Calibration results: Pairwise correlation coefficients (ρij)

CHN USA EUR KOR EGY
CHN 1.000
USA 0.525 1.000
EUR 0.460 0.652 1.000
KOR 0.247 0.419 0.277 1.000
EGY -0.395 -0.186 -0.101 -0.397 1.000

Table 5: Jurisdictional rankings of linkage coalitions

Most preferred coalition Second most preferred coalition
CHN {CHN,USA,EUR,KOR,EGY} {CHN,USA,EUR,KOR}
USA {CHN,USA} {CHN,USA,EGY}
EUR {CHN,EUR} {CHN,EUR,KOR,EGY}
KOR {CHN,KOR} {CHN,KOR,EGY}
EGY {CHN,EGY} {CHN,KOR,EGY}
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Table 6: Multilateral linkage with costs and alternative cost-sharing rules (x = 0.75)

S∗ E{∆̃S∗} Set of blocking jurisdiction under R#

z
=

1 R3 and R5: ∅
{{CHN,USA,EUR},{KOR,EGY}} 0.0221 R1, R2, R4, R6, R7, ...

... R8 and R9: {KOR}

z
=

0.
5

R1, R4, R5 and R7: ∅
R2: {KOR}

{{CHN,USA,EUR},{KOR,EGY}} 0.0137 R3: {EUR}
R6 and R8: {EUR,KOR}
R9: {CHN}

z
=

0

R5: ∅
R1: {KOR}
R2 and R4: {CHN,USA}

{{CHN,USA,EUR,KOR,EGY}} 0.0118 R3 and R6: {KOR,EGY}
R7: {CHN}
R8: {USA,EUR}
R9: {EGY}

Note: Cost parameters are set such that linkage costs (i) amount to a share x of the aggregate gains from
the global market; (ii) are composed of a share z (resp. 1− z) of implementation (resp. negotiation) costs.
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Figure 1: Jurisdictional preferences in terms of linkage coalition
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Figure 2: Illustration of monotonicity of linkage
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Appendices

A Collected proofs

Without loss of generality, fix C ∈ C such that C = {1, 2, . . . ,m} with m ∈ [[3;n]].

A.1 Proof of Observation 1

Since the variance is a symmetric bilinear form, it jointly holds that

V{pC} = V{ΘC} = Ψ−2

C

(
m∑
i=1

ψ2
i σ

2
i + 2

∑
1≤i<j≤m

ψiψjρijσiσj

)
,

ΨC
m∑
j=1

ψjV{θj} =
m∑
i=1

m∑
j=1

ψiψjσ
2
j =

m∑
i=1

ψ2
i σ

2
i +

∑
1≤i<j≤m

ψiψj(σ2
i + σ2

j ).
(A.1)

Further noting that ∀(i, j) ∈ [[1;m]]2, σ2
i + σ2

j ≥ 2ρijσiσj and that V {p̄i} = V {θi} concludes.
The statement on price volatility variations at jurisdictional levels can be conducted for a
bilateral linkage only as the argument naturally extends to multilateral links. By definition,

V{p̄i} = σ2
i , V{p̄j} = σ2

j , and V{p{i,j}} = (ψi + ψj)−2(ψ2
i σ

2
i + ψ2

jσ
2
j + 2ρijψiψjσiσj). (A.2)

Without loss of generality, assume that jurisdiction i (resp. j) is the ex-post low-volatility
(resp. high-volatility) jurisdiction, i.e. σj ≥ σi. Then, {i, j}-linkage reduces price volatility
in the high-volatility jurisdiction i.f.f. V{p̄j} ≥ V{p{i,j}}, which is equivalent to

ψi(σj − σi)
(
ψi(σi + σj) + 2ψjσj(1− ρij)

)
≥ 0, (A.3)

and unconditionally holds, i.e. for all ψi, ψj, σj ≥ σi and ρij ∈ [−1; 1]. It might not be the
case, however, that {i, j}-linkage reduces price volatility in the low-volatility jurisdiction. In
particular, V{p̄i} ≥ V{p{i,j}} holds if and only if

ψj(σj − σi)
(
ψj(σi + σj) + 2ψiσi(ρij − 1)

)
≤ 0 ⇔ ψj

ψi
≤ 2σi(1− ρij)

σi + σj
. (A.4)

For a given triple (σi, σj, ρij), {i, j}-linkage effectively reduces volatility in the low-volatility
jurisdiction provided that the high-volatility jurisdiction is not too large in comparison.
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A.2 Proof of Lemma 3.1 and Equations (17,19,21)

Since damages from pollution are fixed and do not vary with the prevailing linkage coalition
structure, the economic surplus from C-linkage accruing to partnering jurisdiction i ∈ C is
given by the difference between its benefits under C-linkage and autarky, that is

δC,i = (b1 + θi − pC)(qC,i − ωi)−
b2

2ψi
(q2
C,i − ω2

i ) = b2

ψi
qC,i(qC,i − ωi)−

b2

2ψi
(q2
C,i − ω2

i )

= b2

2ψi
(qC,i − ωi)2 = ψi

2b2
(p̄i − pC)2,

(A.5)

where the second and fourth equalities obtain via the necessary first-order condition (14) and
the net demand for permits (16) under C-linkage, respectively. This is Equation (17) and
taking expectations proves Lemma 3.1.

Recalling from Equation (18) that p̄i−pC = θi−ΘC and applying the definition of ΘC further
gives Equation (19). Expanding then gives

δC,i = ψi
2b2Ψ2

C

m∑
j=1,j 6=i

ψj

{
ψj(θi − θj)2 + 2

m∑
k>j,k 6=i

ψk(θi − θj)(θi − θk)
}
. (A.6)

Now notice that

2(θi − θj)(θi − θk) = (θi − θk + θk − θj)(θi − θk) + (θi − θj)(θi − θj + θj − θk)

= (θi − θj)2 + (θi − θk)2 − (θj − θk)2.
(A.7)

Using the above and regrouping sums, we obtain that

δC,i = ψi
2b2Ψ2

C

m∑
j=1,j 6=i

ψj

{
(ΨC − ψi)(θi − θj)2 −

m∑
k>j,k 6=i

ψk(θj − θk)2
}
. (A.8)

Noting that ΨC−i
= ΨC − ψi, Equation (21) then obtains from Equation (11).

A.3 Proof of Proposition 3.2 (bilateral decomposition)

Summing over Equation (21) over all i ∈ [[1;m]] gives

∆C .=
m∑
i=1

δC,i = Ψ−2
C

m∑
i=1

{
m∑

j=1,j 6=i

{
ΨC−i

(ψi + ψj)∆{i,j} − ψi
m∑

k>j,k 6=i
(ψj + ψk)∆{j,k}

}}
. (A.9)
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Regrouping terms by bilateral linkages, the above rewrites

∆C = Ψ−2
C

∑
1≤i<j≤m

{(
ΨC−i

+ ΨC−j

)
(ψi + ψj)∆{i,j} −

m∑
k=1,k 6=i,j

ψk(ψi + ψj)∆{i,j}
}
, (A.10)

which in turn yields

∆C = Ψ−2
C

∑
1≤i<j≤m

{(
ΨC−i

+ ΨC−j
−ΨC−{i,j}

)
(ψi + ψj)∆{i,j}

}
= Ψ−1

C
∑

1≤i<j≤m
(ψi + ψj)∆{i,j}.

(A.11)

This is Equation (22) and proves Proposition 3.2.

A.4 Proof of Proposition 3.3 (superadditivity)

For all C ∈ C and C ′ ⊂ C, denote by C ′′ the complement of C ′ in C, i.e. C = C ′ ∪ C ′′ and
C ′ ∩ C ′′ = ∅. This is without loss of generality. Expanding Equation (22) gives

∆C = (2ΨC)−1
( ∑

(i,j)∈C′×C′
(ψi + ψj)∆{i,j} +

∑
(i,j)∈C′′×C′′

(ψi + ψj)∆{i,j} + 2
∑

(i,j)∈C′×C′′
(ψi + ψj)∆{i,j}

)

= Ψ−1
C

(
ΨC′∆C′ + ΨC′′∆C′′ +

∑
(i,j)∈C′×C′′

(ψi + ψj)∆{i,j}
)
.

(A.12)
Simple manipulation of Equation (A.12) yields the aggregate payoff from merging the two
linkage coalitions C ′ and C ′′

∆C′!C′′ .= ∆C −∆C′ −∆C′′

= Ψ−1
C

( ∑
(i,j)∈C′×C′′

(ψi + ψj)∆{i,j} +
(
ΨC′ −ΨC

)
∆C′ +

(
ΨC′′ −ΨC

)
∆C′′

)

= Ψ−1
C

( ∑
(i,j)∈C′×C′′

(ψi + ψj)∆{i,j} −ΨC′′∆C′ −ΨC′∆C′′
)
.

(A.13)

As mentioned in the main text ∆C′!C′′ also obtains by definition of bilateral linkage, that is

∆C′!C′′ = ΨC′ΨC′′
2b2ΨC

(V{ΘC′}+ V{ΘC′′} − 2Cov{ΘC′ ; ΘC′′}) ≥ 0. (A.14)
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A.5 Alternative proof of Corollary 3.6

Without loss of generality, fix i = m such that C−i = {1, 2, . . . ,m − 1}. By subtracting
Equation (22), we obtain that

∆C −∆C−i
= Ψ−1

C
∑

1≤j<k≤i
(ψj + ψk)∆{j,k} −Ψ−1

C−i

∑
1≤j<k≤i−1

(ψj + ψk)∆{j,k}

= Ψ−1
C

i−1∑
j=1

(ψj + ψi)∆{j,i} −
∑

1≤j<k≤i−1
(Ψ−1
C−i
−Ψ−1

C )(ψj + ψk)∆{j,k}

= Ψ−1
C Ψ−1

C−i

(
i−1∑
j=1

ΨC−i
(ψj + ψi)∆{j,i} − ψi

∑
1≤j<k≤i−1

(ψj + ψk)∆{j,k}
)

= ΨCΨ−1
C−i
δC,i,

(A.15)

where the last line follows from Equation (21). Tacking expectations proves Corollary 3.6.
Notice that telescoping Equation (A.15) provides an alternative way of computing the gains
from merging two disjoint coalitions.

B Jurisdictional vs. social preferences

Case 1: ψi = ψj = ψk = ψ; ρij = ρik = ρjk = 0; and σk = σ, σi = xσ, σj = yσ (x, y ≥ 0).

E{∆{i,j}} = ψσ2

4b2
(x2 + y2), E{∆{i,k}} = ψσ2

4b2
(x2 + 1), and E{∆{j,k}} = ψσ2

4b2
(y2 + 1). (B.1)

In terms of jurisdictional preferences, the following holds



E{δ{i,j},i} ≥ E{δI,i} ⇔ 5y2 ≥ 7x2 + 4

E{δ{i,j},j} ≥ E{δI,j} ⇔ 5x2 ≥ 7y2 + 4

E{δ{i,k},i} ≥ E{δI,i} ⇔ 4y2 + 7x2 ≤ 5

E{δ{j,k},k} ≥ E{δI,k} ⇔ 5y2 ≥ 4x2 + 7

E{δ{i,k},k} ≥ E{δI,k} ⇔ 5x2 ≥ 4y2 + 7

(B.2)

It follows that trilateral linkage would be the Condorcet-winning linkage coalition from a
global perspective since it ranks first or second for every jurisdiction. As exposed below
(with four jurisdictions) there are examples where it is not necessarily the case.
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Case 2: σi = σj = σk = σ; ρij = ρik = ρjk = 0; and ψk = ψ, ψi = xψ, ψj = yψ (x, y > 0).

E{∆{i,j}} = xyψσ2

b2(x+ y) , E{∆{i,k}} = xψσ2

b2(x+ 1) , and E{∆{j,k}} = yψσ2

b2(y + 1) . (B.3)

In this case, E{δ{i,j},i} ≥ E{δI,i} ⇔ y3 ≥ x(xy+x+2y) which e.g. holds for all x ≥ 5/6 and
y = 2x. Note that E{δ{i,j},j} ≥ E{δI,j} ⇔ x3 ≥ y(xy + y + 2x) cannot hold simultaneously.

Case 3: σi = σj = σk = σ; ψi = ψj = ψk = ψ; and ρjk = ρ 6= 0, ρij = xρ, ρik = yρ.

E{∆{i,j}} = ψσ2

2b2
(1− ρx), E{∆{i,k}} = ψσ2

2b2
(1− ρy), and E{∆{j,k}} = ψσ2

2b2
(1− ρ). (B.4)

In this case, E{δ{i,j},i} ≥ E{δI,i} ⇔ 8y ≥ 4 + x+ 3/ρ.

Proof of Observation 3. We formally show that for any jurisdictional characteristics, both
i and j cannot favour {i, j}-linkage over I-linkage simultaneously. By way of contradic-
tion, assume that E{δ{i,j},i} ≥ E{δI,i} and E{δ{i,j},j} ≥ E{δI,j} both hold. It follows that
E{δ{i,j},i} + E{δ{i,j},j} = E{∆{i,j}} ≥ E{δI,i} + E{δI,j} = E{∆I} − E{δI,k}, which contra-
dicts with Corollary 3.6, i.e. with E{∆I} − E{∆{i,j}} > E{δI,k}. The non-concordance of
jurisdictional preferences over linkage coalitions extends to the general case.

Empirical examples with four jurisdictions. With a set of four jurisdictions composed
of Europe, Japan, Korea and Egypt, jurisdictional preferences for linkage coalitions are non-
concordant but four-jurisdiction linkage ranks second for each jurisdiction among all possible
linkage coalitions so that it is the Condorcet-winning coalition from a global perspective.

However, if we now consider China, USA, Europe and Japan, four-jurisdiction linkage is the
preferred coalition for China but ranks fourth for the other jurisdictions. In particular, there
is no unique Condorcet-winning linkage coalition as there is a tie between the four-jurisdiction
linkage and two trilateral linkages ({Chine,USA,Europe} and {Chine,USA,Japan}).

40



C Selection of emissions caps and linkage profitability

Linkage profitability with different jurisdictional abatement efforts. In general,
solving for any interior C-linkage equilibrium yields the following permit equilibrium price

pC = b1 − b2ΩCΨ−1
C + ΘC, (C.1)

and taking the difference with the autarkic price in jurisdiction i ∈ C then gives

p̄i − pC = θi −ΘC − b2
(
ΩCΨ−1

C − ωiψ−1
i

)
. (C.2)

It holds that p̄i − pC = θi − ΘC provided that ΩCΨ−1
C = ωiψ

−1
i , that is jurisdiction i’s

abatement effort (corrected for size) is equal to the C-average. Our results for C-linkage thus
hold provided that all jurisdictions in C have an emissions cap proportional to size by the
same factor, i.e. ∃A > 0 : ∀i ∈ C, ωi = A · ψi. When this is not the case, then expected
jurisdictional surplus from C-linkage amounts to ∀i ∈ C

E{δC,i} = ψ

2b2
E{(θi −ΘC)2}+ b2ψi

(
ΩCΨ−1

C − ωiψ−1
i

)2
, (C.3)

so that there is an additional shock-independent non-negative term. This implies ∀i ∈ C

∂ωi
E{δC,i} = 2b2ψi

(
ΩCΨ−1

C − ωiψ−1
i

)(
Ψ−1
C − ψ−1

i

)
≥ 0⇔ ωiψ

−1
i ≥ ΩCΨ−1

C . (C.4)

In a fashion akin to Helm (2003) and irrespective of the shock structure, jurisdictions with
size-adjusted abatement efforts lower than C-average (ωiψ−1

i ≥ ΩCΨ−1
C ) are systematically the

seller jurisdictions in expectations (E{p̄i} ≤ Ψ−1
C
∑
j∈C ψjE{p̄j}) and thus have an incentive

to expand their domestic caps to increase sales. Anticipation of linkage and strategic cap
selection is thus an important topic, so far not considered in the paper.

Alternative cap selection mechanisms. Let C ∈ C be a coalition on cap selection:
jurisdictions in C set their caps cooperatively. Denote by C̄ the complement of C in C:
jurisdictions in C̄ behave as singletons w.r.t. cap selection. We assume Stackelberg conjectural
variations where C behaves as the leader. Notice, results would slightly differ under alternative
conjectural variations, see e.g. MacKenzie (2011) and Gelves & McGinty (2016). For instance
in the paper, we consider a Cournot-Nash solution concept for the non-cooperative outcome.
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The aggregate reaction function of singletons to the emissions cap ΩC set in C reads

Ωr
C̄(ΩC) = ΨC̄(b1 − d1 − d2ΩC)

b2 + d2ΨC̄
. (C.5)

Coalition C recognises Ωr
C̄ when jointly deciding upon ΩC, that is

max
(ωi)i∈C

{∑
i∈C

Bi(ωi; θi)− |C|D
(
ΩC + Ωr

C̄(ΩC)
)}
. (C.6)

Solving and then summing over i in C gives the aggregate cap

ΩC = AC ·ΨC, with AC
.= (b1 − |C|d1)(b2 + d2ΨC̄)2 − |C|b2d2(b1 − d1)ΨC̄

b2
(
(b2 + d2ΨC̄)2 + b2d2|C|ΨC

) , (C.7)

and from Equation (C.5) one has for C̄ that

ΩC̄ = AC̄ ·ΨC̄, with AC̄
.=

ΨC̄
(
b1 − d1 − d2AC ·ΨC

)
b2 + d2ΨC̄

. (C.8)

Differentiating the above w.r.t. cardinalities of coalitions gives

∂|C|AC < 0, and ∂|C̄|AC̄ = − d2ΨC
b2 + d2ΨC̄

∂|C|AC > 0. (C.9)

The first inequality means that the higher the number of cooperating jurisdictions, the more
pollution externalities are internalised, the higher partnering jurisdictions’ individual abate-
ment efforts. The second inequality corresponds to carbon leakage: all else equal, in response
to higher abatement efforts in C, jurisdictions in C̄ will lower theirs.

Notice, C = I corresponds to full-cooperation with the common abatement effort factor
An = b1−nd1

b2+nd2ΨI and we assume b1 > nd1. Similarly, when C̄ = I corresponds to the non-
cooperative cap-selection mechanism described in the body of the paper, with common
abatement effort A1 = b1−d1

b2+d2ΨI . Note that A1 < An since jurisdictions do not internalise
the negative externality generated by their polluting activities on the other n − 1 jurisdic-
tions.

Two comments are now in order in comparing C-linkage equilibria under full cooperation and
no cooperation. In the following, the superscript fc (nc) indicates that caps are selected
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cooperatively (non cooperatively). First, in terms of equilibrium prices, ∀C ∈ C

p̄fcC = b1 − b2An + ΘC > p̄ncC = b1 − b2A1 + ΘC, (C.10)

that is, autarkic and C-linkage are higher due to more stringent abatement objectives. Now
notice that ∀C ∈ C,∀i ∈ C

qfcC,i − ω
fc
i = qncC,i − ωnci = ψi

b2
(θi −ΘC), (C.11)

which is independent of the abatement effort factor A, that is the amount of permits traded by
any jurisdiction in any C-linkage is the same irrespective of the two cap-selection alternatives
and the results of the paper are preserved.
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