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Abstract

We study the dynamic behavior of an individual in a situation

where his outcomes depend on two uncertain variables: his intrinsic

ability and the nature of his environment. We analyze the mistakes

in inferences and experimentation decisions made by an agent who

holds overconfident beliefs about his ability. We show that the agent

overestimates the importance of individual merit relative to external

factors if he succeeds, and underestimates it if he fails. His distorted

beliefs lead him to drop out prematurely after failure and to switch

too easily from an environment to another. We apply the theory

to shed light on the attribution of guilt and merit in teams, the

formation of preferences over redistributive policies, the influence

of role models, and the long-run effect of self-esteem management

interventions on motivation.
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“The search for a scapegoat is the easiest of all hunting expeditions.”

(Dwight D. Eisenhower)

1 Introduction

Individuals usually have imperfect knowledge about their ability to suc-

ceed in their projects. Since most people tend to think too highly of their

intrinsic characteristics on important dimensions (intelligence, beauty, tal-

ent), the psychology and economics literature has generally concluded that

most individuals are too optimistic regarding their future outcomes. In

environments where effort and ability are complements in the production

function, overconfident beliefs are commonly regarded as a source of moti-

vation to invest effort, take risks and engage in competition.

The purpose of this paper is to qualify this conclusion. We introduce

a simple observation in an otherwise standard repeated decision model:

in many situations, the outcome of an agent’s endeavor not only depends

on his intrinsic ability but also on some characteristics of his environment

which he initially knows imperfectly. Since his intrinsic ability and the

nature of the environment jointly condition the results of his effort, his

overconfidence distorts the process by which he learns about exogenous

payoff-relevant variables. For instance, a student who initially holds confi-

dent expectations about his intelligence but who repeatedly receives disap-

pointing grades might revise his beliefs about his ability but also conclude

that the teacher’s method is ineffective, that the exams are poorly designed,

or that the academic system does not reward individual merit. This pes-

simistic inference, in turn, conditions his future decisions, such as how much

time to dedicate to preparing the next exam, or even whether to drop out

completely.

We study the dynamic experimentation problem of an agent whose out-

comes are determined by three uncertain variables: his intrinsic ability

θ, an extrinsic parameter λ, and a temporary random shock. The vari-

able λ describes the nature of the task or of the environment in which the

agent operates. Even though λ and θ are independent from each other,

Bayesian updating creates some ex post correlation: the inferences made

by the individual over λ depend on his prior beliefs over θ. Our theory
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delivers several testable predictions, some of which are supported by the

experimental literature. Individuals who hold overconfident beliefs about

their ability θ tend to underestimate the role of external factors relative

to skills after succeeding and to overestimate it after failing. In a dynamic

setting, unsuccessful individuals resign themselves to the fact that personal

merit is unimportant, which compromises their willingness to persevere: a

high self-confidence fosters motivation in the short-run but might deplete

perseverance after failing. Finally, overoptimism vanishes asymptotically

and individuals accurately forecast their outcomes in the long-run if they

operate in a stable environment, but overconfidence might persist.

Section 3 describes our model. An agent is engaged in a repeated task

over an infinite horizon and reaps a binary outcome—success or failure—at

each period. At date t his probability of succeeding p(λ, θ) is an increasing

function of his—fixed—intrinsic ability θ and of an exogenous parameter λ.

The parameter λ can describe either the nature of the task or that of the

environment in which the agent operates at date t. The two parameters

λ and θ are unknown ex ante and the agent learns about both by experi-

menting the activity. Our main assumption is that the agent has unrealistic

prior beliefs about θ.

We first abstract away from endogenous experimentation decisions and

analyze the agent’s passive inferences given an exogenous information set.

In section 4 we focus on the asymptotic properties of the beliefs updating

process. Analyzing whether learning opportunities ultimately eliminate the

initial misperception is of obvious practical importance. If the agent ex-

periments the task in a stable environment, he receives an infinite number

of signals and accumulates knowledge about the data-generating process in

this environment. Under standard regularity conditions, his posterior be-

liefs about his future rewards converge almost surely to a point mass at the

true value. However, the two parameters θ and λ are not separately iden-

tifiable and the agent maintains incorrect beliefs about both variables at

the limit: he overestimates θ and underestimates λ, rationalizing his disap-

pointing empirical success rate by forming overly pessimistic beliefs about

his environment. The model therefore predicts that overoptimism—about

p(λ, θ)—vanishes asymptotically in stable environments, leading the agent

to make correct decisions in that environment at the limit. By contrast,
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overconfident beliefs—about θ—can persist indefinitely, being rationalized

by imputing a low success rate to extrinsic characteristics of the task. An

overconfident individual transferred into a new environment—e.g. a worker

transferred into a new unit, a student who enrolls at a new university—

therefore becomes overoptimistic again about his future outcomes. We

contrast this result to the situation where the agent operates in a different

environment at each period: since blaming the environment is not a cred-

ible excuse for the poor performance, the individual asymptotically learns

the truth about his ability.

In section 5 we proceed to analyze how overconfidence affects the agent’s

inferences on the trajectory. We show that an overconfident individual is

prone to a self-serving attribution bias when he forms his beliefs about λ: a

successful individual overestimates the importance of skills in his environ-

ment whereas a less successful agent holds external contingencies responsi-

ble for his failures and underestimates the degree to which people deserve

their outcomes. Whether this distortion leads the decision-maker to per-

ceive the task as more difficult or easier than it truly is depends on the

degree of complementarity between the type of the individual and that of

the environment. We first study the case where ability is more important

as a production factor under higher values of λ, reflecting the fact that

skilled individuals benefit more from a favorable environment than their

low-skilled peers. Under this assumption, a high achiever perceives the

task as easier than it is whereas a disappointed individual overestimates

its difficulty—and therefore underestimates its informativeness. The pos-

itive link between overconfidence and optimism at play in static models

is reinforced if the agent succeeds but can be reversed after a sequence of

failures since the individual loses faith too quickly in his environment: he

might therefore be induced to drop out prematurely from tasks in which he

should persevere. We provide conditions under which this is the case and

discuss how our results are modified if individual ability is a substitute to

the quality of the environment.

In section 6 we make the information sets endogenous by analyzing the

active learning decisions of the agent. We study an infinite-horizon exper-

imentation problem introduced by Banks and Sundaram (1992). At each

period, the agent chooses to continue performing the task in his current
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environment or to drop out and replace it by another environment whose

value is randomly drawn. The agent is patient and faces a trade-off be-

tween exploration—acquiring knowledge about his current environment—

and exploitation—maximizing his immediate expected reward. This model

might for instance describe the following decisions: whether a manager

should hire new workers or not, whether a worker should stay with his cur-

rent employer or look for a position elsewhere, whether a student should

persevere in his field or re-orient his academic career, whether an indi-

vidual should stay with his current partner or look for a new one, etc.

This framework allows us to identify the type of mistakes associated with

overconfidence in experimentation decisions. We show that an overconfi-

dent individual tends to be too easily dissatisfied with his environments

and to—sometimes wrongly—expect higher rewards elsewhere. As a con-

sequence, he tends to switch too early from an environment to another

and to experiment too much relative to a non-overconfident peer. We also

show that his search process ends in finite time if and only if his initial

expectations are not too high relative to his true ability.

For the sake of methodological discipline, we maintain the assumption

that individuals correctly perform Bayesian updating, the only distortion

being their initial overconfidence. The model also admits an alternative in-

terpretation in which the agent has correct prior beliefs but updates asym-

metrically after good and bad news, as documented in Eil and Rao (2011)

and Möbius et al. (2013). Under this interpretation, individuals who re-

ceive a disappointing outcome find a scapegoat or other external factors

to blame in order to protect their self-view, thereby generating an ex post

distortion in their inferences.

We conclude in section 7 by describing some applications of our model.

The parameter λ can be understood differently depending on the context:

intrinsic difficulty of the task, contribution of co-workers engaged in a col-

lective project, fairness of the inter-generational mobility system, structure

of the feedback information received, etc. We discuss our results in these

cases and derive some testable predictions of our theory. We then proceed

to analyze the learning process of an individual who observes the outcomes

of some peers who operate in the same environment, with a particular em-

phasis on the effect of role models. Finally, we show that incorporating
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ex ante cognitive distortions into our framework can account for self- and

others-handicapping, a type of behavior often observed in the educational

context.

2 Related literature

Overconfidence A large literature in psychology and economics suggests

that individuals hold unrealistic self-views over important dimensions (e.g.,

intelligence, beauty, sociability). People often report exaggeratedly opti-

mistic beliefs about their relative position inside a group (such as in the

“better-than-average effect”, see for instance Svenson, 1981; Thaler, 2000),

or about the likelihood of experiencing desirable life events in the future,

all the more so as these events are controllable (Weinstein, 1980). The in-

troduction of monetary incentives for accuracy does not eliminate the bias

(Camerer and Lovallo, 1999; Hoelzl and Rustichini, 2005; Grossman and

Owens, 2012), suggesting that individuals’ economic behavior is affected,

at least to some extent, by their optimism.1

The literature in economics has focused on the costs and benefits of

holding overconfident beliefs. Besides their psychic benefits, overconfident

expectations also play a functional role and therefore affect material pay-

offs. A usual starting point of this analysis is that effort and ability are

considered as complementary inputs in the production function, which gives

self-confidence a motivational role (Gilbert and Cooper, 1985). Bénabou

1Some researchers have argued that the better-than-average effect needs not result
from distortions in the cognitive process and is compatible with Bayes’ rule. For instance,
Van den Steen (2004) shows that heterogeneous prior beliefs about the likelihood of suc-
cess of different actions endogenously leads to overconfidence, since people self-select in
the actions that they estimate more successful. Santos-Pinto and Sobel (2005) propose
a model in which people invest in their skills and have different beliefs about the map-
ping from their vector of skills to their general ability, yielding the same phenomenon.
Benôıt and Dubra (2011) show that half of the population can rate herself above the
median after a correct use of Bayes’ rule. Zabojnik (2004) and Köszegi (2006) pro-
pose a model where people stop experimenting when they are confident enough in their
ability, thereby generating ex post overconfidence. Conversely, Eil and Rao (2011) and
Möbius et al. (2013) document that subjects depart from Bayes’ rule when they update
their beliefs over a self-relevant dimension (intelligence and beauty), in that good news
receive more weight in the posterior beliefs than bad news. This finding corroborates
recent evidence in neuroscience about brain activity and information processing about
self-relevant characteristics (Sharot, 2011).
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and Tirole (2002) build on this idea to show that overconfidence can be ben-

eficial to the individual by mitigating his procrastinating tendencies, but

might also lead him to exert too much effort with little chances of succeed-

ing.2 In the financial sector, Barber and Odean (2001) link overconfidence

to excessive trading and show that men, who are known for being more

overconfident, trade 45% more than women - and incur important losses

from it. Camerer and Lovallo (1999) document that overconfident subjects

ignore selection effects in tournaments and overestimate their chance of

winning: as a consequence, they compete too much. In the experiment

by Baumeister et al. (1993), participants who hold an unrealistically high

self-view set goals that are too difficult and are exposed to a high probabil-

ity of failure. Our theory highlights another potential cost associated with

overconfident beliefs in experimentation decisions. In particular, it shows

that the correlation between self-confidence and optimism with respect to

future rewards can be negative in a dynamic setting. This effect is men-

tioned by Bénabou and Tirole (2003) (section 3.3) who offer an example

on which our analysis generalizes.

Many educational practices or self-help strategies aim at boosting indi-

viduals’ self-esteem to improve their motivation. However, this strategy has

perverse long-run effects (Mueller and Dweck, 1998; Kamins and Dweck,

1999; Henderlong and Lepper, 2002; Dweck, 2007): children whose self-

confidence is exogenously inflated prior to starting a task are usually more

motivated to start the activity, but they also display a lower perseverance

after a negative feedback. Our theory proposes an explanation for these

findings: highly self-confident children who fail at a task make pessimistic

inferences about the task or the environment, which reduces their perceived

productivity of effort.

Attribution bias Our model highlights the link between overconfident

expectations and the tendency, observed among most individuals, to at-

2Other benefits of overconfidence have been proposed. Compte and Postlewaite
(2004) directly incorporate beliefs in the production function, assuming that a higher
self-confidence reduces anxiety and improves performance. In a strategic setting, Hvide
(2002) shows that holding distorted beliefs might be beneficial in strategic interactions
if this distortion is known to other players. At the group level, Gervais and Goldstein
(2007) argue that overconfidence alleviates the free-rider problem by fostering individual
incentives to provide effort.
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tribute their achievements to their own merits and their failures to external

factors. This fact is observed in many contexts: academic outcomes (Arkin

and Maruyama, 1979), car accidents (Stewart, 2005), collective or individ-

ual performance in sport (Lau and Russell, 1980), outcome of joint projects,

for instance among couples (Ross and Sicoly, 1979).3 Grossman and Owens

(2012) provide noisy feedback information to the subjects, and show that

participants overestimate the role of bad luck after receiving disappointing

outcomes; in addition, they show that this result is due to overconfident

prior beliefs, most participants following Bayes’ rule quite accurately.

To our knowledge, the only literature in economics that has explored the

consequences of attribution biases has focused on financial applications.4

Gervais and Odean (2001) model traders who become overconfident by tak-

ing too much credit for successes; they show that the attribution bias leads

them to make mistakes and therefore incur losses in the long-run. Billett

and Qian (2008) present empirical results consistent with self-serving attri-

butions. Libby and Rennekamp (2012) verify experimentally that overcon-

fident beliefs due to self-serving attributions influence financial decisions.

In all these papers, biased attributions are the channel by which people

become overconfident and have no direct effect on decisions. By contrast,

in the present work both distortions (on λ and on θ) influence the agent’s

behavior.

Learning biases Our model is also related to recent theoretical efforts

in modeling biases in learning. A first group of papers focuses on learning

3An important question is whether this phenomenon is driven by purely cognitive
factors, such as the availability bias (Miller and Ross, 1975), or indicates motivated
reasoning (Kunda, 1990) arising from ego-protective concerns. Our model shows that
an individual who applies Bayes’ rule to his incorrect prior beliefs forms inferences that
would appear biased to an external observer.

4The expression attribution bias has been used to describe several phenomena, some
of which are distinct from the issues studied in this paper. Haggag and Pope (2016)
provide evidence that people misinterpret how transient contingencies (e.g., the weather,
or their thirst) affect their experienced utility (e.g., from a visit to a park, or from
drinking a beverage) and review the corresponding literature in psychology. In another
context, people are prone to explaining the behavior of others by intrinsic dispositions
rather than external circumstances, a mistake coined as the “fundamental attribution
error”(Ross and Nisbett, 2011). In these experiments, a subject typically has to write an
essay advocating a controversial opinion, and observers fail to account for this constraint
when asked to infer the subject’s genuine political attitude (Jones and Harris, 1967).
Our model focuses instead on attributions of objective outcomes of a pass-fail nature.
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over a multidimensional parameter. Acemoglu et al. (2016) show that two

Bayesian agents can disagree in the long-run when they have different ini-

tial beliefs about the interpretation of signals. Our analysis of asymptotic

passive learning can be seen as an application of their framework since it

relies on the fact that the agent’s prior self-confidence influences his subse-

quent interpretations. The additional structure of our model also allows us

to study disagreement on the path. Andreoni and Mylovanov (2012) pro-

pose a model of learning over a two-dimensional parameter and show that

a temporary polarization of beliefs can result from an initial disagreement,

but that beliefs finally converge to a common value. In contrast to these

papers, we incorporate the beliefs distortion in a decision-theoretic model

where the agent’s observations depend (partly) on his choices.

In our model the agent has a distorted view of reality, which relates the

theory to the literature on misspecified learning. Starting with Berk (1966),

this literature relaxes the assumption that the observer initially attaches a

positive probability to the true parameter of the data-generating process.

Berk (1966) and Bunke and Milhaud (1998) study the asymptotic behav-

ior of Bayesian posteriors, thereby extending standard convergence results

in the case where the model is correctly specified. Esponda and Pouzo

(2016) and Fudenberg et al. (2016) build on this literature to study the

interaction between beliefs and decisions in misspecified settings. Esponda

and Pouzo (2016) propose a general equilibrium framework for situations

where players assign zero probability to the true mapping between actions

and consequences. They postulate that players’ beliefs are concentrated

on subjective models that minimize the Kullback-Leibler distance relative

to the true model—and provide a learning foundation for this assumption,

a property that also arises through Bayesian learning in our framework.

Fudenberg et al. (2016) consider a continuous-time model of active but

misspecified experimentation and characterize the set of possible asymp-

totic beliefs and actions. Our model assumes a special form of misspeci-

fication, which allows us to characterize the learning and experimentation

mistakes that overconfident agents are prone to. In addition, the misspec-

ification that we consider is related to but conceptually distinct from the

notion used in this literature. In particular, while the agent assigns zero

prior probability to his true average reward, he might attach a positive
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prior probability to his true success rate inside a given environment, which

makes his learning process correctly specified if he operates forever inside

this environment. As a consequence (see section 6), he might ultimately

form correct predictions and therefore stop being surprised by his outcomes.

In this situation the agent will not have the opportunity to realize that his

model is wrong, which circumvents the standard criticism addressed to the-

ories of misspecified learning according to which the decision-maker should

reconsider his prior after a sufficiently long history.

The effect of overconfident beliefs on learning about exogenous variables

was also simultaneously and independently explored by Heidhues et al.

(2015). While some of the insights are similar in both papers, in particular

the link between overconfidence and lack of perseverance, the models are

distinct and their implications differ in some interesting ways. On a tech-

nical note, Heidhues et al. (2015) consider a continuous action space and

continuous outcomes, rule out learning on ability and assume parametric

forms that make learning motives irrelevant for the agent’s decision. Con-

versely, we restrict attention to binary actions and outcomes but make no

parametric restrictions. In sections 4 and 5 we also allow the agents to

learn about both parameters. Importantly, we show that the agent is not

always too pessimistic regarding his environment, and that the direction

of the attribution bias depends upon the complementarity between ability

and the quality of the environment. Finally, the papers focus on differ-

ent aspects of the learning process. In particular, Heidhues et al. (2015)

characterize the vicious circle associated with the joint evolution of beliefs

and behavior, whereas the results linked to the exogenous or endogenous

(in)stability of the environment are specific to this paper.

3 Environment

An individual is engaged in a repeated task over an infinite horizon

indexed by t ∈ {1, 2, · · · }. At each date t he receives a binary outcome

πt: a success is written πt = 1, whereas a failure is written πt = 0. The

agent’s outcome at date t depends on three variables. The first variable

is his intrinsic ability at the task, written θ and drawn on the support

Θ = [θ, θ̄] according to the continuous pdf f0. The second variable is a
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task-specific parameter λ that is exogenous to the agent and conditions

his outcomes. The variable λ is distributed according to the continuous

full-support pdf g0 on Λ = [λ, λ̄]. The third variable is a random shock ωt.

Importantly, λ describes some permanent features of the task about which

the agent learns by experimenting, whereas ωt is temporary. The variables

λ, θ and ωt are mutually independent, and the shocks ωt are independently

and identically distributed across periods. Given a pair (λ, θ), the agent’s

probability of succeeding at the task is therefore stationary and written

p(λ, θ). The function p is of class C2 and bounded away from 0 and 1.

We write pλ and pθ for the partial derivatives of p.

Assumption 1. pλ > 0, pθ > 0

The agent’s ability is therefore measured by θ, whereas λ summarizes

the easiness of the task or the extent to which the environment is favorable

to the agent’s prospects. We will refer to λ as the quality of the environ-

ment. As a primitive we will assume that the agent is overconfident about

θ and we will draw the consequences of this assumption for his beliefs over

λ and p(λ, θ). Since underconfidence concerns a smaller but non-negligible

fraction of the population, we will also mention how our results are modified

if the agent has unrealistically low expectations over θ.

We assume that θ is fixed. Whether λ remains constant or vary will

depend upon the application considered. In some contexts it is reasonable

to assume that the production function remains fairly stable, for instance

if a worker performs the same task in the same production unit for a long

time. In other contexts the environment or the nature of the task might

change for exogenous reasons (a reorganization of the firm, the beginning

of a new academic year with other instructors at the university, etc.). We

study these situations in section 4 and 5 by considering the agent’s infer-

ences given an exogenous data set. We also emphasize some immediate

behavioral implications of overconfidence in simple decision problems. Fi-

nally, in some other applications the stability of the environment is an

endogenous feature of the model if the agent has the opportunity to self-

select into a new environment or task if he is dissatisfied with the current

one. In section 6 we make the experimentation outcomes endogenous to the

agent’s decisions and analyze the resulting interaction between self-esteem
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and learning behavior.

4 Asymptotic learning

We start by analyzing the agent’s long-run beliefs in passive learning

situations. The results of this section will be useful to study the experimen-

tation problem of section 6. They are also of independent interest for the

applications where the environment is exogenously imposed to the agent.

4.1 Learning in stable environment

We first assume that λ remains constant over an infinite horizon and

study under which conditions the agent’s self-view converges to the true

value. We write (λ0, θ0) for the true parameters of the data-generating pro-

cess, initially unknown to the agent, and we assume that both are interior:

λ0 ∈ (λ, λ̄) and θ0 ∈ (θ, θ̄). Since we are interested in studying whether

the individual learns the true values of the parameters, our notions of con-

vergence are to be understood in an objective sense and not relative to the

agent’s own expectations. Throughout section 4 we assume that the agent

is initially overconfident in absolute terms.∫ θ̄

θ0

f0(θ)dθ = 1

Consider the set

Ω(λ0, θ0) = {(λ, θ) ∈ Λ×Θ | p(λ, θ) = p(λ0, θ0)}

that contains all the pairs (λ, θ) that predict the true success rate.

We assume that there exists (λ, θ) ∈ Ω(λ0, θ0) such that f0(θ) > 0.5

This assumption ensures that the learning process is correctly specified, in

the sense that the agent’s prior beliefs regarding his probability of success

attribute a positive probability to any open neighborhood of the true value

p(λ0, θ0).

5Recall that g has full support, thereby ensuring that g0(λ) > 0.

12



We write µt for the measure that describes the agent’s posterior beliefs

regarding the two-dimensional parameter (λ, θ), and ft for the posterior

pdf over θ at date t. We are interested in the asymptotic properties of µt

and ft.

The agent receives an infinite sequence of informative signals. At the

limit, Bayesian updating leads him to form an accurate perception of the

true probability of success p(λ0, θ0), approximated by his actual empir-

ical success rate. Standard statistical learning theorems prove that the

sequence of posterior beliefs is consistent: almost surely, the agent’s beliefs

asymptotically attach a probability 1 to any open neighborhood of the set

Ω(λ0, θ0).

Nevertheless, the information observed by the agent is not sufficient to

extract the true values of λ and θ individually: since several pairs (λ, θ)

predict the same success rate, each parameter is not identifiable separately.

Since the agent initially—and at each point in time—overestimates the

value of θ, he must ultimately become over-pessimistic about λ for his

theory to be consistent with the observed outcomes. An overconfident

agent successfully predicts his frequency of success at the limit, but since

he keeps an unrealistically high self-esteem he blames external factors to

rationalize his observations.

Proposition 1. 1. For every open neighborhood U of Ω(λ0, θ0),

limt→+∞ µt(U) = 1 almost surely.

2. For all ϵ > 0, limt→+∞ µt([λ, λ0 + ϵ)× [θ0, θ̄]) = 1 almost surely.

Overconfidence is transmitted by Bayes’ rule from the prior beliefs to

all posterior expectations. However, it is worth emphasizing that the agent

finally forms a theory that is consistent with his observations. At the limit,

he therefore correctly predicts his future success rate and his decisions in

this environment (e.g., effort provision) are based on accurate forecasts.

This feature makes the theory distinct from a misspecified model in which

learning is impaired by the fact that the agent’s prior beliefs initially assign

a probability zero to the true parameter of the data-generating-process

(Fudenberg et al., 2016; Esponda and Pouzo, 2016).

To further understand the link between overconfidence and asymptotic

attributions, corollary 1 relates the limit beliefs of two individuals who differ
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only in their initial prior self-confidence levels f0,1 and f0,2. Individual

1 is more confident than individual 2 in the sense that the support of

f0,1 is (uniformly) above the support of f0,2. Since both agents correctly

predict p(λ0, θ0) at the limit, individual 1’s assessment of λ is (uniformly)

more pessimistic than individual 2’s assessment. In this corollary we also

assume that both models are correctly specified in the sense that there

exists (λi, θi) ∈ Ω(λ0, θ0) (for i = 1, 2) such that f0,i(θi) > 0.

Corollary 1. Consider two pdfs such that inf(supp(f0,1)) > sup(supp(f0,2)).
There exist two sets Λ1,Λ2 ⊆ [0, 1] such that sup(Λ1) < inf(Λ2) and

limt→+∞ µt,i(Λi ×Θ) = 1 almost surely for i = 1, 2.

4.2 Learning in unstable environments

We now analyze the agent’s learning behavior in the situation where he

performs the task in infinitely many different environments, or where he

performs infinitely many different tasks that rely on the same skills. Sup-

pose that a new value of λ is drawn at each period according to the prior

g0 and independently from past realizations. The empirical long-run suc-

cess rate now equals
∫
Λ
p(λ, θ0)g0(λ)dλ, which identifies θ0. In a correctly

specified model (i.e. if f0(θ0) > 0), overconfidence vanishes asymptotically.

Proposition 2. If a new value of λ is drawn at each period from an iid

process, and if f0(θ0) > 0, then for every ϵ > 0

lim
t→+∞

∫ θ0+ϵ

θ0

ft(θ)dθ = 1

almost surely.

Propositions 1 and 2 establish some predictions of the model linking

the stability of the environment to the evolution of beliefs. These predic-

tions are testable in controlled experiments or in contexts where changes in

exogenous payoff-relevant characteristics of the task (teachers, co-workers,

etc.) occur naturally. This result has straightforward behavioral implica-

tions. An agent who operates in a stable environment forms correct limiting

beliefs about his future outcomes in this environment. All the behavioral

distortions associated with his initial overconfidence (e.g., excessive effort
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investment) therefore disappear asymptotically and the individual’s deci-

sions are based on accurate beliefs. However, if a new value of λ is drawn,

his overconfidence is no longer mitigated by his pessimism regarding the

quality of the environment, which leads him to overestimate his future out-

comes and to fall prey to the associated behavioral mistakes. Finally, the

individual learns his true ability if he experiments the task with infinitely

many different types of environments. For instance, a worker ultimately

forms accurate beliefs about the outcomes of his teams’ collective effort,

but holds his co-workers responsible for the disappointing success rate and

remains overconfident about his own skills. Transferred into a new team,

he becomes overoptimistic again about the collective performance. This

bias disappears itself over time, and his overconfidence vanishes if he col-

laborates with a large number of different teams.

5 Learning on the trajectory

In this section we analyze the effect of initial self-confidence on the

inferences made by the agent after a finite number of observations. We

assume that the agent operates in an environment m whose type λ is fixed.

Our exercise consists in comparing two agents who share the same prior

distribution over λ, given by the pdf g0, but who hold different initial

beliefs about their ability. Agent i (i = 1, 2) starts the game with a prior

self-confidence represented by the pdf f0,i. Both functions are linked by a

monotone likelihood ratio property that introduces a notion of comparative

self-confidence. Alternatively, this exercise can be interpreted as comparing

an overconfident agent’s actual beliefs and behavior to the benchmark case

in which he has the correct prior distribution in mind. We write ≽MLR for

the monotone likelihood ordering: if u and v are two functions of a real

variable x defined on the same interval, u ≽MLR v means that the function

x → u(x)/v(x) is well-defined and nondecreasing.

Assumption 2. f0,1 ≽MLR f0,2

At date t, the number of successes obtained so far is a sufficient statistic

for the agents’ beliefs. We therefore writeHm
t = n for a history composed of

n successes out of t trials in the environment m and we drop the superscript
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m when it is not confusing. We write with a subscript (t, n, i) the posterior

beliefs formed by individual i conditional on the history Ht = n. For

instance, ft,n,i is the posterior pdf formed by agent i over his ability.

We first observe that the monotone likelihood ratio order is preserved

by Bayes’ rule. As a consequence, agent 1 remains more confident than

agent 2 after any common sequence of observations.

Claim 1.

For any (t, n), ft,n,1 ≽MLR ft,n,2

The results of this section will make clear that assumption 1 is not

sufficient to make predictions about the nature of the agent’s distorted

inferences. The latter depends on the degree of complementarity between

the individual’s ability and the quality of the environment. We first study

the case where λ and θ are complements to each other. The case where λ

and θ are substitutes is discussed in subsection 5.3. The complementarity

between λ and θ is reflected by a monotone likelihood ratio property.

Assumption 3. The function p is strictly log-supermodular:

pλθp > pλpθ

Assumption 3 implies that the likelihood ratio p(λ, θ1)/p(λ, θ2) is in-

creasing in λ for any θ1 > θ2. The parameter λ measures the extent to

which the agent’s intrinsic ability matters relative to luck or other external

factors. The higher λ is, the more individual skills are important to suc-

ceed. As a consequence, the outcome π conveys more information about θ

under higher values of λ, and vice versa.

Combined with assumption 1, assumption 3 describes situations where

more favorable environments are more informative about the agent’s ability.

It is an appropriate assumption in contexts where a failure in an unfavorable

environment does not convey much information about the agent’s type

because even skilled individuals are unlikely to succeed; by contrast, the

outcome of the agent’s effort in a favorable environment is a better indicator

of his ability. An increase in λ has therefore two effects on the agent’s

prospects. First, it increases his success rate. Second, it magnifies the

rewards to talent: more talented individuals benefit more from an increase

16



in the quality of the environment.6

5.1 Attribution bias

We first study the link between the agent’s initial self-confidence and

his inferences over the type λ of his current environment. Proposition 3

establishes the link between overconfidence and biased attributions. We

write gt,n,i for the posterior pdf formed over λ by agent i following the

history Ht = n.

Proposition 3. If assumption 3 holds there exists α0, β0 ∈ (0, 1) such that:

1. If n ≥ α0t, then gt,n,1 ≽MLR gt,n,2.

2. If n ≤ β0t, then gt,n,1 ≼MLR gt,n,2.

This result does not require any correlation between θ and λ from the

ex ante perspective. Under assumption 3, an overconfident individual tends

to over-infer from his outcomes. After a successful history, agent 1 overes-

timates λ: since individual characteristics are more important under high

values of λ, he underestimates the contribution of transient external contin-

gencies (e.g., luck) to his successes. Conversely, he has a greater tendency

to indict external factors after a sequence of failures. If f0,2 is interpreted

as the correct prior distribution, the result states that agent 1 is prone to

an attribution bias in line with experimental findings: he overestimates the

value of λ relative to the objective value after succeeding and underesti-

mates it otherwise. Notice that this pattern of attributions results from

Bayes’ rule applied to incorrect prior beliefs, as documented in the experi-

ment by Grossman and Owens (2012).

The model also predicts an inverse attribution bias for individuals start-

ing from an unrealistically low self-esteem. This finding resonates with ca-

sual evidence on the imposter syndrome, whereby high achievers understate

the value of their accomplishments and exaggerate the role of luck. Con-

sistently with the model, this mindset if found more often among women

6Assumption 3 implies that pθ/p is increasing in λ. In a context where skills can be
acquired through investment in human capital, λ measures both the immediate produc-
tivity of effort and the extent to which educational investment pays off in the long-run.
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or minority groups (Clance and Imes, 1978; Sonnak and Towell, 2001) who

are also known for displaying lower-than-average self-confidence levels.

This result has a variety of implications. The direction of the distortion

informs us about the type of behavioral mistakes associated with overcon-

fidence in subsequent decisions, supposing that only immediate outcomes

are payoff-relevant (e.g., if the agent is myopic). First, the agent misper-

ceives the productivity of individual talent in his environment. To formalize

this result, suppose that the agent tries to estimate, based on his own out-

comes, the difference in productivity between an individual of type θL and

an individual of type θH > θL in the environment m. Formally, the agent

estimates

ϑt,n,i = P[π = 1 | m,Hm
t = n, θH ]− P[π = 1 | m,Hm

t = n, θL]

This parameter governs important decisions, such as how much to invest

in one’s (or one’s children’s) human capital. Given assumption 3, ϑt,n,i

is increasing in the agent’s perceived λ. Proposition 3 implies the follow-

ing result: after a successful history (respectively a disappointing history),

the agent overestimates (respectively underestimates) the extent to which

people obtain their just deserts.

Proposition 4. If assumption 3 holds there exists α1, β1 ∈ (0, 1) such that:

1. If n ≥ α1t, then ϑt,n,1 ≥ ϑt,n,2.

2. If n ≤ β1t, then ϑt,n,1 ≤ ϑt,n,2.

Second, the agent misperceives the quality of his environment relative

to the average λ: he is too easily disappointed after a sequence of failures

and too optimistic about his environment after a sequence of successes.

Suppose that at date t the agent contemplates the opportunity to replace

the environment m by another environment m′ whose type λ is randomly

drawn according to the prior g0. Formally, he estimates

ϵt,n,i = P[π = 1 | m′, Hm
t = n]− P[π = 1 | m,Hm

t = n]

The parameter ϵt,n,i also governs important decisions, such as changing

profession, hiring new workers, divorcing, etc. Proposition 5 implies that
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a successful individual is inclined to make escalating commitments in envi-

ronments in which he has succeeded, while a disappointed individual tends

to see the grass too green elsewhere.

Proposition 5. If assumption 3 holds there exists α2, β2 ∈ (0, 1) such that:

1. If n ≥ α2t, then ϵt,n,1 ≤ ϵt,n,2.

2. If n ≤ β2t, then ϵt,n,1 ≥ ϵt,n,2.

5.2 Optimism

In this subsection we study how the agent’s self-confidence affects his

beliefs regarding his future outcomes in m. Let

ht,n,i = P[πt+1 = 1 | m,Hm
t = n]

denote agent i’s subjective probability of succeeding at his next trial in m

following the history Hm
t = n. The variable ht,n,i measures the decision-

maker’s optimism regarding his future (immediate) outcome. If the agent is

myopic, this parameter determines his binary decision between persevering

at the task or selecting a known outside option.

Initial self-confidence has two effects. First, a more confident individ-

ual intrinsically tends to perceive a higher probability of success. Second,

miscalibrated beliefs over θ also influence the decision-maker’s inferences

about λ, as proposition 3 shows. An overconfident high-achiever overesti-

mates both θ and λ, which makes him too optimistic about his probability

of success.

In contrast, a less successful individual overestimates θ but underesti-

mates λ. The two effects go in opposite directions and the overall impact

on optimism depends on which of these effects dominates. If the attri-

bution effect is greater, self-confidence causally undermines perseverance

after failure in this dynamic setting, an effect that runs counter to common

wisdom. As Bénabou and Tirole (2003) point out: praising a child after a

failure can make him desperate about his environment, whereas criticizing

him (“You failed even though the task was easy”) lowers his self-esteem but

might promote his faith in the returns to effort.
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We show that the attribution effect can dominate the self-confidence

effect and make the decision-maker overly pessimistic. Proposition 6 de-

livers a condition under which this property holds after a sufficiently large

number of failures. The condition states that the return to ability equals

zero for small values of λ. In other words, the individual believes that the

lowest-quality environments do not reward individual merit at all.7

Assumption 4. There exists ϵ > 0 such that

∀(λ, θ) ∈ [λ, λ+ ϵ]×Θ, pθ(λ, θ) = 0

Under assumption 4, individual 1 becomes desperate about his environ-

ment faster than individual 2, and his initial overconfidence has no impact

for the low values of λ on which the agents’ beliefs are asymptotically

concentrated. As a result, overconfidence generates over-optimism after

successful histories and over-pessimism after a sufficiently large number of

failures.

Proposition 6. Suppose that assumption 3 holds.

1. There exists α3 ∈ (0, 1) such that ht,n,1 ≥ ht,n,2 if n ≥ α3t.

2. Suppose that assumption 4 holds. Then, for all n ∈ N, there exists

t̄(n) ∈ N such that ht,n,1 ≤ ht,n,2 whenever t ≥ t̄(n).

Before analyzing the complete experimentation decisions in section 6, we

highlight some behavioral implications of proposition 6 in contexts where

the agent cares only about immediate outcomes, thereby neglecting the

value of information associated with his decisions. After successful histo-

ries the agent’s decisions are based on an unrealistically high perception

of his chances of success. He falls prey to the same distortions that arise

in theories of overconfidence in which λ is known (Bénabou and Tirole,

2002): in particular, excessive effort investment if ability and effort are

complements (Bénabou and Tirole, 2002; Baumeister et al., 1993), insuf-

ficient effort provision if effort and ability are substitutes (Bénabou and

7Under assumption 4, the function p is log-supermodular but not strictly so on the
domain [λ, λ+ ϵ]×Θ. We assume strict log-supermodularity of p only on [λ+ ϵ, λ̄]×Θ.
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Tirole, 2002), risk-taking (Barber and Odean, 2001) and competitive be-

havior (Camerer and Lovallo, 1999). In addition, he is inclined to making

escalating commitments in environments in which he has succeeded at the

cost of missing profitable outside opportunities that might appear along

his trajectory. Conversely, after unsuccessful outcomes the agent perceives

unrealistically low chances of success and falls victim to the opposite mis-

takes. In particular, he tends to quit the task too early after failures while

persevering would potentially make him better off, to invest too little in

his human capital and to switch tasks or environments too frequently.8

5.3 Substitutes

We now briefly discuss how our results are modified if ability is a substi-

tute rather than a complement to the quality of the environment. This as-

sumption describes cases where the rewards to individual talent are greater

in difficult tasks, for instance because everyone is likely to succeed at an

easy task. In the appendix we show that the appropriate assumption is

the strict log-supermodularity of 1 − p, which together with assumption

1 implies that p is strictly log-submodular, i.e. that the likelihood ratio

p(λ, θ1)/p(λ, θ2) is decreasing in λ for any θ1 > θ2.
9 Proposition 7 shows

that the direction of the attribution bias is opposite to the case where λ

and θ are complements.

Assumption 5. The function 1− p is strictly log-supermodular.

Proposition 7. If assumption 5 holds there exists α4, β4 ∈ (0, 1) such that

1. If n ≥ α4t, then gt,n,1 ≼MLR gt,n,2.

2. If n ≤ β4t, then gt,n,1 ≽MLR gt,n,2.

Since the nature of the environment is less important when the agent is

more skilled, an overconfident individual tends to infer too little from his

8The link between ego and lack of perseverance is exemplified by the increasing
preoccupation, among American employers, regarding the lack of grit exhibited by the
so-called Y generation. Interestingly, this phenomenon coincides with the propagation,
both at school and among households, of self-development theories that promote self-
confidence as a key asset for succeeding in life.

9In the proof of proposition 3 we use the fact that 1 − p is strictly log-submodular,
which is implied by assumptions 1 and 3.
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outcomes, which contrasts with proposition 3. After a sequence of successes

he minimizes the role played by his environment and attributes too much

merit to himself. After a sequence of failures he blames the temporary

shocks and is too slow at inferring that he faces a difficult task. The

behavioral distortions are therefore distinct from the case where λ and θ

are complements: the agent tends to persevere too long in tasks that are too

difficult, while he fails to acknowledge the contribution of his environment

to a successful history.

Although the direction of the bias is different, propositions 3 and 7

have a common meaning. In both cases an overconfident individual over-

estimates the role of ability relative to external factors after a successful

history while he underestimates the importance of skills after failing. In

particular, the result of proposition 4 remains true in identical terms if

1 − p is strictly log-supermodular. Whether this distortion leads the in-

dividual to perceive the task as easier or more difficult than it is depends

on whether the informativeness of the outcomes about the agent’s ability

varies positively or negatively with the difficulty of the task.

6 Active learning

6.1 Decision problem

In this section we make the information sets endogenous by analyzing

the agent’s experimentation decisions. We incorporate our model into a

class of infinite-horizon bandit problems introduced and analyzed in Banks

and Sundaram (1992). The agent faces an infinite and countable number

of different environments (firms, workers, partners, tasks, etc.) written

1, · · · ,m, · · · . Each environment is described by a type j ∈ {1, · · · , J}. Ex
ante all environments look similar to the agent: the probability that an

environment is of type j is equal to ν(j) > 0. If the environment is of type

j its quality equals λj and the probability of success in that environment

for an agent of ability θ equals p(λj, θ). We assume that λ1 > · · · > λJ , i.e.

that the best types have the lowest indices. Unless otherwise specified, we

make no assumptions on p other than those described in section 3.

At each date t the agent chooses an environment (an “arm”) m ∈ N and
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receives his outcome πt. The agent can either select a new environment

that he has never tried or persevere in an environment in which he has

already performed the task.10 We will say that the agent experiments if he

decides to switch from his current environment.

We assume that the agent has no uncertainty regarding his ability: his

prior beliefs put a probability 1 on some value θ ∈ Θ. This assumption

ensures that the arms of the bandit problem are independent from each

other: the knowledge gained by the agent in one environment does not

provide any information about his rewards in other environments. Allowing

for two-dimensional experimentation would certainly be desirable but this

class of problems is very complex to analyze, not least because the standard

tools from the bandit literature such as the dynamic allocation indices

(Jones and Gittins, 1972) do not apply for correlated bandit problems.

After witnessing his outcome πt in the environment m the agent up-

dates his beliefs about the type of m and proceeds with the game. He

faces a trade-off between exploitation—maximizing his immediate expected

reward—and exploration—acquiring knowledge about his current environ-

ment. The agent is an exponential discounter with a factor δ ∈ [0, 1). A

date t-history describes the identity of the environment selected at each

date s ≤ t and the outcome obtained. A policy σ is a sequence of func-

tions σt : Ht → N where Ht is the set of possible date t-histories. Given a

history Ht, σt(Ht) specifies which environment the agent selects at date t.

The objective of agent i is to find a policy σ that maximizes his expected

discounted gain:

V (θi) = max
σ

+∞∑
t=1

δtE[πt | σ]

Banks and Sundaram (1992) analyze the optimal policy in that class

of situations under the assumption that the agent has a correctly specified

model. Our aim is to understand how overconfidence affects the behavior

of the agent in this framework. We therefore consider two individuals.

Agent 2 has correct beliefs about his ability θ2 and the results of Banks

and Sundaram (1992) apply for this individual: in particular, almost surely

10The agent is allowed to opt in again into an environment that he has previously
tried and discarded, although Banks and Sundaram (1992) show that there exists an
optimal policy that does not make use of this possibility.
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agent 2 stops experimenting in finite time, i.e. he uses only a finite number

of environments. Agent 1 has overconfident beliefs θ1 > θ2 while his true

ability is θ2. Both individuals have the same prior ν over the types of

environments. Comparing their behaviors informs us about the type of

mistakes associated with overconfidence in experimentation decisions. Let

pj = p(λj, θ2) be the true expected reward in an environment of type j.

We proceed as follows. We first provide a complete characterization

of experimentation decisions when J = 2, i.e. when only two types of

environment are possible. In that case we show that agent 1 experiments

more than agent 2 in the following sense: for any common history Hm
t = n

witnessed in an environment, agent 1 cannot decide to persevere in this

environment if agent 2 decides to drop out. We then generalize this result

for J ≥ 2 by providing conditions under which the set of types for which

agent 1 stops experimenting with a positive probability is smaller than

the corresponding set for agent 2, suggesting that agent 1 is less easily

satisfied with an environment than agent 2 and experiments more. We

finally investigate under which conditions agent 1’s overconfidence leads

him to experiment forever. We show that this is the case if and only

his initial overconfidence is sufficiently large in the sense that the highest

possible success rate does not approach the minimum asymptotic success

rate that he initially expects.

6.2 Monotonicity results

Binary case We first analyze the case where J = 2. This assumption

simplifies the analysis and allows us to characterize the effect of overconfi-

dence since it implies that the policy that maximizes the immediate reward

is an optimal policy (Banks and Sundaram, 1992). The agent therefore

stays in his current environment m if he expects a higher probability of

success in m compared to an untried environment m′, and switches to an

untried environment otherwise. Equivalently, the individual persists in an

environment m as long as the weight that he attaches to m being of type

1 is greater than his prior belief.

Proposition 8 states that agent 1 experiments more than agent 2: if

agent 1 decides to stay in the environment m after witnessing the history
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Hm
t = n, agent 2 finds it optimal to stay as well. In other words, agent 1

decides to switch too early relative to the payoff-maximizing strategy.11

Proposition 8. If agent 1 stays in m after history Hm
t = n, agent 2 also

finds it optimal to stay after Hm
t = n. As a result, the expected number

of environments tried by agent 1 is greater than the expected number of

environments tried by agent 2.

Asymptotic result We now drop the assumption n = 2 and we provide

an asymptotic result on the agent’s experimentation decisions. Let us write

T (θi) ⊆ {1, · · · , J} for the set of possible types j that satisfy the following

property: if agent i selects an environment m whose true type is equal

to j, agent i has a positive probability of staying in the environment m

forever. Thus, T (θi) is the set of types that might induce agent i to stop

experimenting. Banks and Sundaram (1992) show that T (θ2) is nonempty

and of the form {1, · · · , τ(θ2)} for some threshold τ(θ2). We are interested

in comparing T (θ1) and T (θ2).

For this result, we restrict attention to the case where the distributions

of p(., θ1) and p(., θ2) coincide except at the extreme parts.

Assumption 6. p(λj, θ1) = pj−1 for all j = 2, · · · , J

This assumption facilitates the analysis for two reasons. First, it ensures

that for all j ∈ {1, · · · , J − 1}, if agent 1 stays in an environment of type

j forever his beliefs about his future reward converge to the true value pj.

This property eliminates the complications and incongruities linked to the

misspecification of beliefs in a stable environment, which could lead agent

1 to stay forever in an environment while having forever over-optimistic

beliefs regarding his future success rate. Second, it allows us to derive a

monotonicity property on the value function of the dynamic programming

problem. We also assume for simplicity that the prior ν is uniform on

{1, · · · , J}, which guarantees that for all j ∈ {1, · · · , J − 1} both agents

envision the success rate pj with the same prior probability.

11This result does not assume any complementarity between λ and θ as in proposition
3. It is weaker than proposition 3 in the sense that it does not compare the agents’
expectations of λ: it states that, after any sequence of outcomes that makes agent 2 less
optimistic about λ relative to the (common) prior, agent 1 is less optimistic as well.
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Given these assumptions we prove that T (θ1) ⊆ T (θ2), i.e. that agent

1 stops experimenting less easily than agent 2. The proof relies on the

following two steps. We first show that V (θ1) > V (θ2), where V (θi) is

the (perceived) value of the dynamic programming problem for agent i.

In other words, agent 1 is more optimistic ex ante regarding the expected

utility that he will reap from the game.12 After staying for a sufficiently

long time in a stable environment, both agents agree on the future expected

reward in this environment. But since V (θ1) > V (θ2), agent 1 perceives

greater rewards from trying a new environment than agent 2, which induces

him to leave more willingly. The set of environments that agent 1 might

find to his liking is therefore too small due to his overconfidence.

Proposition 9. T (θ1) ⊆ T (θ2)

Proposition 9 is also true if θ1 is the correct parameter value, i.e. if

agent 1 has realistic expectations whereas agent 2 is underconfident. Un-

derconfident agents therefore make the opposite mistakes: they experiment

too little and might settle in environments of poor quality.

6.3 Misspecified learning

Banks and Sundaram (1992) show that an agent with a correctly speci-

fied model stops experimenting in finite time almost surely. We now inves-

tigate the conditions under which this property holds for an overconfident

decision-maker.13 In this subsection we make no assumptions on p other

than those described in section 3. Let us write T̃ (θ1) ⊆ {1, · · · , J} for the

set of possible types j that satisfy the following property: if the agent’s

true ability is equal to θ1 and if agent 1 selects an environment m whose

true type is equal to j, agent 1 has a positive probability of staying in the

environment m forever. Thus, T̃ (θ1) is the set of types that might induce

agent 1 to stop experimenting if agent 1’s true type were equal to θ1. T̃ (θ1)

12Alternatively, this property means that agent 1’s overconfidence fosters his motiva-
tion to enter the game initially if he has an outside option. This is not true without
further assumptions on p: in particular the monotonicity of p is not sufficient to imply
that V (θ1) > V (θ2). See Berry and Fristedt (1985) for counter-examples.

13By proposition 9, it is straightforward to see that T (θ2) is not empty if θ1 is the
correct parameter value: in other words, underconfident agents also stop their experi-
mentation efforts in finite time almost surely.
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contains the types j such that agent 1 would agree on committing to stay

in an environment forever if he were certain that this environment is of

type j. To avoid discussing singular cases we assume that there exists no

j ∈ {1, · · · , J} such that the agent is indifferent between experimenting

a new arm and selecting an arm of known expected reward p(λj, θ1). We

write τ̃1 = inf{T̃ (θ1)}. The success rate p(λτ̃1 , θ1) is the minimum asymp-

totic success rate that agent 1 expects to receive.

We show that agent 1’s experimentation efforts stop in finite time if

and only if the maximum expected reward p1 obtained under the true

data-generating-process exceeds his expectation p(λτ̃1 , θ1) or approaches it

sufficiently closely. If the agent’s expectations are too unrealistic, he will

ultimately be dissatisfied by any type of environment, believing that he can

receive better rewards if he switches to a new one. If p, q ∈ (0, 1) we write

R[p | q] for the Kullback-Leibler divergence of the probability distribution

(p, 1− p) relative to (q, 1− q).

Proposition 10. Consider p∗ defined by

R[p∗ | p(λτ̃1 , θ1)] = R[p∗ | p(λτ̃1+1, θ1)]

If p1 < p∗ agent 1 experiments forever almost surely. If p1 > p∗ agent 1

stops experimenting in finite time almost surely.

Under assumption 6 proposition 10 implies the following corollary: agent

1 experiments forever almost surely if τ̃1 = 1, i.e. if he expects an (impos-

sible) asymptotic success rate equal to p(λ1, θ1), and agent 1 stops experi-

menting in finite time almost surely otherwise.

The intuition for this result is as follows. Standard results in the statis-

tics literature on misspecified learning show that the agent’s limiting beliefs

are concentrated on the distributions that minimize the Kullback-Leibler

divergence relative to the true distribution (Berk, 1966). Translated into

our framework, this result implies that if p1 < p∗, irrespective of the true

type j of the environment, the agent’s beliefs converge almost surely to a

limit distribution whose support is bounded above by p(λτ̃1+1, θ1), which is

not large enough to convince him to stay in the environment. He therefore

exits in finite time with probability 1. If p1 > p∗, by contrast, the environ-

ments of type 1 are good enough to induce him to stop experimentation

27



with finite probability. Since there are a finite number of types, the agent

would encounter environments of type 1 infinitely often on his trajectory if

he experimented forever, which is therefore a zero-probability event.

Fudenberg et al. (2016) (claim 3) provide a related result in a different

setting. They analyze a continuous-time one-armed bandit problem with

Bernoulli rewards and misspecified prior beliefs. They show that the agent

switches to the known arm in finite time almost surely if the true frequency

of success of the bandit is small enough relative to the agent’s (binary)

subjective prior over the distribution of rewards, and with probability less

than 1 otherwise. Although proposition 10 has a similar intuition, the

behavioral implications of over- or underconfidence and the implied learning

opportunities are different in the two situations. In Fudenberg et al. (2016)

an agent whose prior beliefs are underconfident or only mildly overconfident

has a positive probability of playing the unknown arm forever. This leads

him to receive an infinite number of signals whose long-run distribution

contradicts his asymptotic beliefs. In our model, by contrast, this agent

settles in a fixed environment in finite time with probability 1. If λ and θ are

not separately identifiable in this environment (e.g., under assumption 6, or

if the support of the agent’s beliefs over the possible distributions of rewards

is sufficiently rich) his beliefs over his future outcomes might therefore

converge to the true value. Conversely, if the agent is severely overconfident,

in the model of Fudenberg et al. (2016) he drops out from the task with

probability 1 and therefore stops learning. In our setting, by contrast, he

endogenously experiments with many different environments and receives

an infinite amount of data—whose distribution contradicts his prior. If

the agent were allowed to reconsider his prior beliefs—which is outside the

scope of the models—we would therefore expect overconfidence to be self-

correcting in our setting but underconfidence to be self-confirming, while

the opposite is true in Fudenberg et al. (2016)’s framework. This difference

is due to the fact that in Fudenberg et al. (2016) the decision-maker leaves

the task entirely when he drops out, whereas in our setting he enters a new

environment in which his ability continues to condition his outcomes.
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7 Discussion and extensions

In this section, we discuss the interpretation of the model in different

contexts and we provide some testable predictions.

7.1 Interpretation of λ

Nature of the activity The variable λ can be viewed as the intrinsic

difficulty of the task. Assumptions 1 and 3 then refer to a context where

easier activities are more informative about the agent, for instance because

succeeding in a difficult environment requires exceptional circumstances.

The model predicts that overconfident individuals underestimate the dif-

ficulty of the task after succeeding and overestimate it after failing. If

instead assumption 5 is satisfied, i.e. if the returns to skills are greater

for difficult tasks, the prediction is reversed: overconfident decision-makers

attribute their failures to bad luck and update their beliefs about the task

too conservatively, which induces them to persist too long after failing.

Fairness In broad terms, λ can be viewed as a parameter that measures

the extent to which people are responsible for their own outcomes, as op-

posed to luck or other uncontrollable factors. A low-λ environment can for

instance refer to a situation where some social groups are discriminated

against because of fixed individual traits (gender, race, socio-economic

background), in which case their talent and their efforts can do little to

compensate the fundamental inequity. This contrasts with a high-λ envi-

ronment that describes a society where people get their just deserts.14

Our model predicts that successful individuals understate the impor-

tance of socio-economic rigidities; believing in a “just world” (Lerner, 1980;

Bénabou and Tirole, 2006), they attribute others’ misfortunes to their own

dispositions such as their supposed lack of ability or willpower. Conversely,

they overestimate the merit of their high-achieving peers. Less successful

individuals underestimate the fairness of the social mobility system and

display the opposite attributions.

14The model could easily be extended to allow for heterogeneous values of λ in the
population, reflecting the idea that chances are unequal. Assumptions 1 and 3 are
well suited to describe an individual growing up in a disadvantaged social group whose
prospects are better in a fairer society.
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In addition, if citizens factor distributive-justice concerns into judgment

over redistributive policies (Alesina and Angeletos, 2005), their view of the

nature of social competition determines their political preferences. Our

model predicts that the rich are too prone to advocate pro-market policies

and low levels of redistribution even if their material interest is not at

stake, whereas the reverse holds for the poor. The experiment by Deffains

et al. (2016) offers evidence consistent with this theory. After performing

a real effort task whose production function is uncertain, subjects tend to

choose lower redistribution levels for their peers if they learn that their own

performance lies in the top half of the distribution. In the field, Di Tella

et al. (2007) use a natural experiment in Argentina to document that poor

households are significantly more likely to believe in a “just world” after

receiving land property rights from the government.15

Production externalities In a team production context, λ can describe

the performance, intentions or skills of the decision-maker’s co-workers.

The model predicts that attributions of merit and blame in teams depend

on the nature of strategic relationships between the co-workers’ produc-

tions. If the returns to a worker’s talent are increasing in his co-worker’s

performance, an overconfident individual takes out collective failures on

his peers, which undermines his motivation to invest in the group’s future

projects.16 The model therefore predicts that overconfident individuals are

too quick to put an end to unsuccessful collaborations. After succeeding,

in contrast, they form overoptimistic beliefs about their peers and invest

too much in the interaction.

The predictions are reversed if individual performances are substitutes.

An overconfident individual takes too much credit for collective achieve-

ments and attributes the failures of his group to transient shocks such as

bad luck, thereby updating too slowly (in both directions) about his peers’

15In predicting that people’s redistributive preferences depend upon their own trajec-
tory, our theory is closely related to the seminal paper by Piketty (1995). The main
difference is that, in our model, self-perceptions influence the formation of beliefs con-
ditional on a trajectory, leading people to form heterogeneous perceptions of the same
reality.

16Childrens’ and teenagers’ tendencies to form hostile and paranoid beliefs about the
intentions of the people with whom they interact are a recurrent topic of ethnographic
studies (Donnellan et al., 2005).
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ability.

Information structure Suppose that the agent receives a sequence of in-

formative signals about his ability, and that the correlation between signals

is uncertain ex ante. The model predicts that an overconfident individual

exaggerates the correlation when he receives a series of bad news, and un-

derestimates it if he receives a sequence of good news. For instance, consider

a student or worker who receives feedback on a project from two advisers.

His advisers might form their judgment independently, or the second ad-

viser might simply come round to the first adviser’s assessment without

studying the project. The informativeness of the feedback is greater in the

former case. The model predicts that the student overestimates the inde-

pendence of his advisers’ judgments if they both report favorably on the

project, and overestimates their correlation if they both express adverse

opinions.

7.2 Task selection

In some contexts, individuals have the opportunity to self-select into

their preferred type of environment. For instance, educational decisions

involve choosing between several paths that offer different levels of difficulty

and give different importance on individual ability relative to other factors,

such as effort. We briefly mention here the predictions of our model in the

case where the individual is able to selectively pick a value of λ. Our results

are special cases of existing theorems of the monotone comparative statics

literature (Milgrom and Shannon, 1994; Athey, 2002).

Suppose that the individual faces the decision problem

max
λ∈Λ

∫
Θ

p(λ, θ)ydF0,i(θ)− c(λ) (1)

where c(λ) is a continuous, increasing and convex cost. Suppose also that p

is concave in λ, thereby ensuring the existence of a unique optimal solution

λ∗
i for individual i. Proposition 11 shows that overconfident individuals

tend to invest in activities that are too ability-intensive. On a somewhat

counter-intuitive manner, overconfidence does not necessarily induce indi-
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viduals to choose tasks that are excessively difficult. This result is true

if λ and θ are substitutes, in which case the agent thinks that his talent

can make up for a low quality-environment. By contrast, if λ and θ are

complements, the returns to effort are greater in easier tasks and the indi-

vidual therefore selects a task that is not challenging enough compared to

the optimal choice. Underconfident agents make the opposite choices and

self-select into environments in which ability plays little role, which also

prevents them from correcting their beliefs. To formalize this intuition,

proposition 11 compares the decision λ∗
i (i = 1, 2) in problem 1 of two

individuals whose prior beliefs are linked by assumption 2.

Proposition 11. If p is log-supermodular, λ∗
1 ≥ λ∗

2. If p is log-submodular,

λ∗
1 ≤ λ∗

2.

Proof. See theorem 1 in Athey (2002).

7.3 Peer effects

Role models Popular culture frequently showcases the accomplishments

of role models in various domains (sport, science, business, etc.) as a source

of inspiration. The exposure to success stories is thought of as a way to

promote faith in the long-term return to effort, especially for groups who

face unfavorable conditions (ethnic minorities, female scientists, etc.). In

this subsection we analyze how an individual’s beliefs are affected by the

outcomes of his peers exposed to similar conditions.

Consider an individual 1 with (possibly empty) history Ht1,1 = n1 and a

peer, individual 2, whose historyHt2,2 = n2 is observed by both agents. The

pdfs f0,1 and f0,2 describe agent 1’s initial beliefs over θ1 and θ2, respectively.

Both agents face the same value of λ, reflecting the idea that they operate

in similar environments. The variables λ, θ1 and θ2 are independent.

The effect of social learning on agent 1’s beliefs is summarized by the

likelihood ratios

gt1,n1 [λ | Ht2,2]

gt1,n1(λ)
and

ft1,n1,1[θ1 | Ht2,2]

ft1,n1,1(θ1)

Observing a successful role model yields good news about λ. If player 1

hasn’t received any feedback information about his ability so far (t1 = 0),
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this is the only effect. Exposure to role models therefore unambiguously

fosters optimism among inexperienced individuals.

If agent 1 already has some experience at the task, receiving infor-

mation over λ leads him to reexamine his own history and to update his

self-confidence. The direction of this effect depends on his success ratio

and his own history, as proposition 3 suggests. To fix ideas, suppose that

individual 1 has failed repeatedly. If assumption 5 is satisfied, the fact

that λ is high boosts the agent’s self-esteem by allowing him to attribute

his misfortunes to temporary shocks. If instead assumption 3 is satisfied,

observing his peer succeed makes him realize that the environment is more

favorable than he thought, which delivers bad news about his ability.17

As in proposition 6, the overall impact of the role model on his perceived

probability of success depends on which of these two effects dominates.

Proposition 12. There exists α5, β5, γ5 ∈ (0, 1) such that, if n2 ≥ t2α5,

1. gt1,n1 [. | Ht2,2 = n2] ≽MLR gt1,n1 for all (t1, n1)

2. f0,1[. | Ht2,2 = n2] = f0,1

3. Under assumption 3, ft1,n1,1[. | Ht2,2 = n2] ≼MLR ft1,n1,1 if n1 ≤ β5t1

4. Under assumption 5, ft1,n1,1[. | Ht2,2 = n2] ≽MLR ft1,n1,1 if n1 ≤ γ5t1

7.4 Information avoidance

Besides holding an unrealistic self-view, a significant fraction of individ-

uals also display an aversion to self-relevant information (see for instance

Burks et al., 2013; Möbius et al., 2013; Eil and Rao, 2011). Under assump-

tion 3, this pattern of preference implies that varying λ has two opposite

effects on motivation: a positive instrumental effect—increasing λ magni-

fies the chance of success—and a negative informational effect—increasing

λ makes the outcomes more informative about ability, which is undesir-

able. If the information aversion is strong enough, an increase in λ can

paradoxically undermine the motivation to exert effort.

17For instance, Lockwood and Kunda (1997) show that exposure to superstars is a
positive reinforcer when their achievements seem attainable to the individual, and a
negative reinforcer otherwise.
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Since λ is sometimes chosen or influenced by economic agents, this ob-

servation opens the door to several interesting implications. First, the use

of competitive compensation schemes plausibly makes interpersonal com-

parisons of ability more salient than noncompetitive pay-for-performance

bonuses. Information-aversion might lead individuals to reduce their ef-

fort provision in such situations, even if their material incentives to effort

are greater. Evidence that competitive rewards depletes motivation and

performance in the classroom is plentiful (Covington, 2000), especially for

children who are particularly sensitive to failure. Similarly, in the exper-

iment by Bracha and Fershtman (2013), a competitive incentive scheme

reorients effort from a “smart” activity where ability is an important input

towards a more automatic task.

Second, in the educational context, the effort decision can itself be ma-

nipulated by students in order to strategically influence the amount of

information transmitted to their environment. Information-avoiding indi-

viduals might resort to self-handicapping behavior by working too little, by

procrastinating, or by selecting into very challenging activities in order to

be able to attribute their failure to their lack of effort or to the difficulty

of the task.18 On the other hand, if effort is sufficient (but not necessary)

to succeed, information aversion generates excessive investment decisions

aimed at eliminating any risk of failure (Covington, 2000). Self-protective

strategies might therefore generate both procrastinators and overstrivers,

as a function of their initial self-confidence. The design of optimal feed-

back procedures to minimize these self-defeating strategies is an important

question, that we leave for future work.

Finally, the model also delivers an informational foundation to explain

why some individuals decide to raise obstacles to their peers’ success. As an

illustration, a particularly striking sociological observation in some African-

American neighborhoods is that hard-working students are victims of ha-

rassment from their classmates unless they decide give up on their am-

bitions (Austen-Smith and Fryer Jr, 2005). According to our model, an

information-averse individual has incentives to hinder the achievements of

18Self-handicapping first appeared in the experiment by Berglas and Jones (1978), in
which some participants chose to take a performance-impairing drug before a difficult
task.
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his peers, since observing them succeed would shed a new (and unpleasant)

light on his own outcomes and convey bad news about his ability.

8 Conclusion

This paper shows that overconfidence generates distortions in the pro-

cess by which individuals learn about their environment, which can mitigate

or even reverse the behavioral implications of overconfidence in static set-

tings. Our main result is that an overconfident decision-maker is too easily

dissatisfied by his environment, perseveres too little after failing and tends

to experiment too much relative to the payoff-maximizing behavior.

The analysis can be extended in several directions. In particular, the

individual decision problem can be used as a foundation to study the strate-

gic interaction between an agent and a principal or an audience. First, the

agent might be motivated by the opportunity to signal his ability to third

parties, as in career concern models. This would influence the type of en-

vironment or tasks in which he strategically self-selects. Second, as our

results show, a principal tempted to use self-esteem management as a tool

to motivate the agent must take into account the trade-off between the im-

mediate and the long-run effects of a boost in self-confidence in the choice of

an information disclosure policy. Finally, information-averse agents might

react negatively against the use of high-powered incentives that reveal too

much of their ability, which raises the question of the optimal incentive

scheme. More generally, the interaction between a principal who can in-

fluence the nature of the task or the environment and an agent subject to

ego-related cognitive distortions raises interesting and important questions,

that we leave for future work.
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Appendix

A Proofs of section 4

A.1 Proof of proposition 1

Consider the measure νt defined on the Borel σ-algebra of R by

νt(A) = µt({(λ, θ) ∈ Λ×Θ | p(λ, θ) ∈ A})

for every measurable A. This measure is well-defined since p is continuous and

therefore measurable.

The agent gathers an infinite number of i.i.d. binary signals. In addition,

given the assumptions in the main text there exists an open neighborhood O of

p(λ0, θ0) such that ν0(x) > 0 for any x ∈ O. It is a standard result in statistical

learning theory that posterior beliefs are consistent: for every open neighborhood

U of p(λ0, θ0), limt→+∞ νt(U) = 1 almost surely. This proves part 1.

To prove part 2, observe that µt(Λ× [θ0, θ̄]) = 1 at any date t, by Bayes rule.

Therefore

µt([λ, λ0 + ϵ)× [θ0, θ̄]) = 1− µt([λ0 + ϵ, λ̄]× [θ0, θ̄]) (A.1)

In addition, [λ0 + ϵ, λ̄]× [θ0, θ̄] ⊆ {(λ, θ) ∈ Λ×Θ | p(λ, θ) ≥ p(λ0 + ϵ, θ0)} since

p is increasing, and therefore

µt([λ0 + ϵ, λ̄]× [θ0, θ̄]) ≤ νt([p(λ0 + ϵ, θ0), 1]) (A.2)

Notice that the right-hand-side of A.2 converges to zero almost surely since the

set [p(λ0+ϵ, θ0), 1] is closed and does not contain p(λ0, θ0). Therefore, combining

equations A.1 and A.2 shows that limt→+∞ µt([λ, λ0 + ϵ)× [θ0, θ̄]) = 1 almost

surely.

A.2 Proof of corollary 1

Consider for i = 1, 2 the non-empty set

Si = {λ ∈ Λ | ∃θ ∈ supp(f0,i), p(λ, θ) = p(λ0, θ0)})

and define λ1 = sup(S1) and λ2 = inf(S2). There exists (θ1, θ2) ∈ supp(f0,1) ×
supp(f0,2) such that p(λ1, θ1) = p(λ2, θ2) = p(λ0, θ0). Since θ1 > θ2, the mono-
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tonicity of p implies that λ1 < λ2.

Consider ϵ > 0 such that λ1 + ϵ < λ2 − ϵ. The set p([λ1 + ϵ, λ̄]× supp(f0,1))

does not contain p(λ0, θ0) (and is bounded away from it). By the consistency of

posterior beliefs,

lim
t→+∞

νt[p([λ1 + ϵ, λ̄]× supp(f0,1))] = 0 almost surely

i.e.

lim
t→+∞

µt([λ1 + ϵ, λ̄]× supp(f0,1)) = 0 almost surely

which implies that

lim
t→+∞

µt([λ, λ1 + ϵ]× supp(f0,1)) = 1 almost surely

The same reasoning delivers

lim
t→+∞

µt([λ2 − ϵ, λ̄]× supp(f0,2)) = 1 almost surely

Setting Λ1 = [λ, λ1 + ϵ] and Λ2 = [λ2 − ϵ, λ̄] completes the proof.

B Proofs of section 5

We write Lt,n(λ, θ) = p(λ, θ)n(1− p(λ, θ))t−n for the (normalized) likelihood

function and we skip the variables (λ, θ) when it is not confusing. We will make

extensive use of the continuous version of Chebyshev’s sum inequality, restated

below (see Mitrinovic et al., 2013, , chapter 9).

Lemma A.1. Consider a compact interval X ⊂ R. If f, g : X → R are inte-

grable functions, both nondecreasing or both nonincreasing, and h : X → R+ is

integrable, then∫
X
f(x)g(x)h(x)dx

∫
X
h(x)dx ≥

∫
X
f(x)h(x)dx

∫
X
g(x)h(x)dx (B.1)

If f is nonincreasing and g is nondecreasing, inequality B.1 is reversed.
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B.1 Proof of claim 1

Bayes’ rule yields

ft,n,i(θ) =
f0,i(θ)

∫
Λ Lt,n(λ, θ)dG0(λ)∫∫

Λ×Θ Lt,n(λ, θ′)dG0(λ)dF0,i(θ′)

And therefore

ft,n,1(θ)

ft,n,2(θ)
=
f0,1(θ)

f0,2(θ)

∫∫
Λ×Θ Lt,n(λ, θ

′)dG0(λ
′)dF0,2(θ

′)∫∫
Λ×Θ Lt,n(λ, θ′)dG0(λ′)dF0,1(θ′)

is nondecreasing in θ by assumption 2.

B.2 Proof of proposition 3

The proof proceeds in two steps. First, we show that the likelihood ratio

Lt,n(λ1, θ)/Lt,n(λ2, θ) is nondecreasing in θ for any λ1 > λ2 whenever the success

rate is large enough, and nonincreasing whenever the success rate is small enough.

This property is straightforward for fixed (λ1, λ2); the crux of the proof is to

obtain bounds that are uniform in (λ1, λ2). The second step consists of an

application of lemma A.1.

Claim A.1. Consider the domain D = {(λ1, λ2, θ) ∈ Λ2 × Θ | λ1 > λ2} and the

function ψ defined on D by

ψ(λ1, λ2, θ) =
Lt,n(λ1, θ)

Lt,n(λ2, θ)

There exist α0, β0 ∈ (0, 1) such that if n ≥ α0t (resp. n ≤ β0t), ψ is nondecreas-

ing (resp. nonincreasing) in θ for any λ1 > λ2.

Proof. ψ is continuously differentiable ψθ is of the sign of

n(1− p(λ1, θ))(1− p(λ2, θ))[pθ(λ1, θ)p(λ2, θ)− pθ(λ2, θ)p(λ1, θ)] (B.2)

− (t− n)p(λ1, θ)p(λ2, θ)[pθ(λ1, θ)(1− p(λ2, θ))− pθ(λ2, θ)(1− p(λ1, θ))]

Consider the function ζ defined on D by

ζ(λ1, λ2, θ) =
pθ(λ1, θ)p(λ2, θ)− pθ(λ2, θ)p(λ1, θ)

pθ(λ1, θ)(1− p(λ2, θ))− pθ(λ2, θ)(1− p(λ1, θ))

By assumption 3, the function pθ/p is strictly increasing in λ. In addition, since

pθ/(1−p) = (pθ/p)×(p/(1−p)), the function pθ/(1−p) is also strictly increasing
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in λ. This proves that both the numerator and the denominator of ζ take positive

values, which implies that ζ is well-defined and that ψθ and ξ have the same sign.

Our next step is to show that ζ can be extended by continuity to the compact

domain D̄ = {(λ1, λ2, θ) ∈ Λ2 ×Θ | λ1 ≥ λ2}. Fix (λ2, θ) and consider a Taylor

expansion of ζ(·, λ2, θ) at the right neighborhood of λ2. This yields (we drop the

dependence in (λ2, θ) for all functions):

ζ(λ2 + ϵ, λ2, θ) =
(pθ + ϵpλθ + o(ϵ))p− pθ(p+ ϵpλ + o(ϵ))

(pθ + ϵpλθ + o(ϵ))(1− p)− pθ(1− p− ϵpλ + o(ϵ))

=
ϵ(pλθp− pλpθ) + o(ϵ)

ϵ(pλθ(1− p) + pλpθ) + o(ϵ)

→ pλθp− pλpθ
pλθ(1− p) + pλpθ

when ϵ→ 0

We can therefore define ζ(λ2, λ2, θ) = limϵ→0 ζ(λ2 + ϵ, λ2, θ), which is positive

by assumption 3. The function ζ extended on D̄ is continuous and takes only

positive values, it therefore admits a positive lower bound and a positive higher

bound.

Recall that p is uniformly bounded away from 0 and 1. Consider the real

numbers γ0 = (sup p)2/(1− (sup p)2)× 1/ inf ζ and κ0 = (inf p)2/(1− (inf p)2)×
1/ sup ζ. Equation B.2 shows that ψ is nondecreasing (resp. nonincreasing) in θ

for any λ1 > λ2 as soon as n ≥ γ0(t− n) (resp. n ≤ κ0(t− n)). Defining α0 and

β0 by α0(1 + γ0) = γ0 and β0(1 + κ0) = κ0 completes the proof.

To prove the proposition, suppose first that n ≥ α0t. Take any λ1 > λ2. By

assumption 2, the function f0,1(θ)/f0,2(θ) is nondecreasing in θ, and, by claim

A.1, the function ψ(λ1, λ2, θ) is also nondecreasing in θ. Lemma A.1 delivers

[ ∫
Θ

Lt,n(λ1, θ)

Lt,n(λ2, θ)

f0,1(θ)

f0,2(θ)
Lt,n(λ2, θ)dF0,2(θ)

][ ∫
Θ
Lt,n(λ2, θ)dF0,2(θ)

]
≥ (B.3)[ ∫

Θ

Lt,n(λ1, θ)

Lt,n(λ2, θ)
Lt,n(λ2, θ)dF0,2(θ)

][ ∫
Θ

f0,1(θ)

f0,2(θ)
Lt,n(λ2, θ)dF0,2(θ)

]
Rearranging B.3 yields∫

Θ Lt,n(λ1, θ)dF0,1(θ)∫
Θ Lt,n(λ1, θ)dF0,2(θ)

≥
∫
Θ Lt,n(λ2, θ)dF0,1(θ)∫
Θ Lt,n(λ2, θ)dF0,2(θ)

which is simply
gt,n,1(λ1)

gt,n,2(λ1)
≥ gt,n,1(λ2)

gt,n,2(λ2)
(B.4)

Since equation B.4 is true for any λ1 > λ2, gt,n,1 ≽MLR gt,n,2, which proves
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part 1. Part 2 is symmetric given n ≤ β0t.

B.3 Proof of proposition 4

Since pλθ > 0 by assumptions 1 and 3 the difference p(λ, θH) − p(λ, θL) is

nondecreasing in λ. Take α1 = α0 and β1 = β0 defined in the proof of proposition

3.

Suppose first that n ≥ α1t. By proposition 3, gt,n,1 ≽MLR gt,n,2, which

implies that gt,n,1 ≽FOSD gt,n,2. Thus,∫
Λ
gt,n,1(λ)[p(λ, θH)− p(λ, θL)]dλ ≥

∫
Λ
gt,n,1(λ)[p(λ, θH)− p(λ, θL)]dλ

which is simply ϑt,n,1 ≥ ϑt,n,2. If n ≤ β1t, we have gt,n,1 ≼FOSD gt,n,2 and

therefore the inequality is reversed.

B.4 Proof of proposition 5

Consider the function υ defined on Θ by

υ(θ) =

∫
Λ Lt,n(λ, θ)

[
p(λ, θ)−

∫
λ′,θ p(λ

′, θ)dG0(λ
′)
]
dG0(λ)∫

Λ Lt,n(λ, θ)dG0(λ)

We first show that υ is nondecreasing (resp. nonincreasing) in θ when the

success rate is large enough (resp. small enough). The proof of claim A.1 can

easily be adapted to find α2 such that the ratio Lt,n(λ, θ1)/Lt,n(λ, θ2) is nonde-

creasing in λ for any θ1 > θ2, n ≥ α2t. Suppose without loss of generality that

α2 ≥ sup(p). Since p is also nondecreasing in λ, whenever θ1 > θ2 and n ≥ α2t

lemma A.1 yields[ ∫
Λ
Lt,n(λ, θ1)[p(λ, θ2)−

∫
Λ
p(λ′, θ2)dG0(λ

′)]dG0(λ)
][ ∫

Λ
Lt,n(λ, θ2)dG0(λ)

]
≥

(B.5)[ ∫
Λ
Lt,n(λ, θ2)[p(λ, θ2)−

∫
Λ
p(λ′, θ2)dG0(λ

′)]dG0(λ)
][ ∫

Λ
Lt,n(λ, θ1)dG0(λ)

]
In addition, since n ≥ sup(p)t the function Lt,n(λ, θ1) is nondecreasing in λ.

40



Since p(λ, θ1)− p(λ, θ2) is also nondecreasing in λ, by lemma A.1∫
Λ
Lt,n(λ, θ1)[p(λ, θ1)− p(λ, θ2)]dG0(λ) ≥∫

Λ
Lt,n(λ, θ1)dG0(λ)

∫
Λ
[p(λ′, θ1)− p(λ′, θ2)]dG0(λ

′)

i.e. ∫
Λ
Lt,n(λ, θ1)[p(λ, θ1)−

∫
Λ
p(λ′, θ1)dG0(λ

′)]dG0(λ) ≥ (B.6)∫
Λ
Lt,n(λ, θ1)[p(λ, θ2)−

∫
Λ
p(λ′, θ2)dG0(λ

′)]dG0(λ)

Combining B.5 and B.6 delivers υ(θ1) ≥ υ(θ2). Thus, υ is nondecreasing in θ

whenever n ≥ α2t. By lemma A.1,[ ∫
Θ
υ(θ)

f0,1(θ)

f0,2(θ)

∫
Λ
Lt,n(λ, θ)dG0(λ)dF0,2(θ)

][ ∫
Θ

∫
Λ
Lt,n(λ, θ)dG0(λ)dF0,2(θ)

]
≥[ ∫

Θ
υ(θ)

∫
Λ
Lt,n(λ, θ)dG0(λ)dF0,2(θ)

][ ∫
Θ

f0,1(θ)

f0,2(θ)

∫
Λ
Lt,n(λ, θ)dG0(λ)dF0,2(θ)

]
i.e. ∫∫

Λ,Θ Lt,n(λ, θ)[p(λ, θ)−
∫
Λ p(λ

′, θ)dG0(λ
′)]dG0(λ)dF0,1(θ)∫∫

Λ,Θ Lt,n(λ, θ)dG0(λ)dF0,1(θ)
≥∫∫

Λ,Θ Lt,n(λ, θ)[p(λ, θ)−
∫
Λ p(λ

′, θ)dG0(λ
′)]dG0(λ)dF0,2(θ)∫∫

Λ,Θ Lt,n(λ, θ)dG0(λ)dF0,2(θ)

which is simply ϵt,n,1 ≤ ϵt,n,2. Part 2 is symmetric.

B.5 Proof of proposition 6

If agent i ∈ {1, 2} attempts to do the task after history Ht = n, his subjective

probability of succeeding is given by

ht,n,i =

∫∫
Λ×Θ Lt+1,n+1(λ, θ)dG0(λ)dF0,i(θ)∫∫

Λ×Θ Lt,n(λ, θ)dG0(λ)dF0,i(θ)

Let us write

ξt,n(θ) =

∫
Λ Lt+1,n+1(λ, θ)dG0(λ)∫

Λ Lt,n(λ, θ)dG0(λ)
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Proof of part 1 Consider α3 = α2 defined in the proof of proposition 5, so

that Lt,n(λ, θ1)/Lt,n(λ, θ2) is nondecreasing in λ if θ1 > θ2 and n ≥ α3t. Since

p(., θ2) is also nondecreasing in λ, lemma A.1 delivers

[ ∫
Λ

Lt,n(λ, θ1)

Lt,n(λ, θ2)
p(λ, θ2)Lt,n(λ, θ2)dG0(λ)

][ ∫
Λ
Lt,n(λ, θ2)dG0(λ)

]
≥[ ∫

Λ

Lt,n(λ, θ1)

Lt,n(λ, θ2)
Lt,n(λ, θ2)dG0(λ)

][ ∫
Λ
Lt,n(λ, θ2)p(λ, θ2)dG0(λ)

]
Rearranging and noticing that p(λ, θ1) ≥ p(λ, θ2) for any λ delivers ξt,n(θ1) ≥
ξt,n(θ2). The function ξt,n is therefore nondecreasing in θ whenever n ≥ α3t.

Applying lemma A.1 again yields[ ∫
Θ
ξt,n(θ)

f0,1(θ)

f0,2(θ)

∫
Λ
Lt,n(λ, θ)dG0(λ)dF0,2(θ)

][ ∫
Θ

∫
Λ
Lt,n(λ, θ)dG0(λ)dF0,2(θ)

]
≥[ ∫

Θ
ξt,n(θ)

∫
Λ
Lt,n(λ, θ)dG0(λ)dF0,2(θ)

][ ∫
Θ

f0,1(θ)

f0,2(θ)

∫
Λ
Lt,n(λ, θ)dG0(λ)dF0,2(θ)

]
which is simply ht,n,1 ≥ ht,n,2.

Proof of part 2 The proof relies on the idea that asymptotically the agents’

beliefs over λ put weight on small values of λ only, for which ability does not

matter. Formally, given assumption 4, let us differentiate ξn,t with respect to θ

and notice that its derivative is of the sign of∫∫
λ1>λ+ϵ,λ2

Lt−2,n−1(λ1, θ)Lt−2,n−1(λ2, θ)pθ(λ1, θ)ψt,n(λ1, λ2, θ)dG0(λ1)dG0(λ2)

where

ψt,n(λ1, λ2, θ) = [n+ 1− (t+ 1)p(λ1, θ)]p(λ1, θ)− [n− tp(λ1, θ)]p(λ2, θ)

Fix n. There exists t+(n) ∈ N such that t ≥ t+(n) implies ψt,n(λ1, λ2, θ) < 0

for all (λ1, λ2, θ) such that λ1 > λ+ ϵ and λ2 ≤ λ+ ϵ/2. This is possible since p

is strictly decreasing in λ, and λ+ ϵ > λ+ ϵ/2. For any t ≥ t+(n), the integral∫∫
λ1>λ+ϵ

λ2≤λ+ϵ/2

Lt−2,n−1(λ1, θ)Lt−2,n−1(λ2, θ)pθ(λ1, θ)ψt,n(λ1, λ2, θ)dG0(λ1)dG0(λ2)

is negative.
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In addition, since p is strictly decreasing in λ, the ratio∫∫
λ1>λ+ϵ

λ2>λ+ϵ/2

Lt−2,n−1(λ1, θ)Lt−2,n−1(λ2, θ)pθ(λ1, θ)ψt,n(λ1, λ2, θ)dG0(λ1)dG0(λ2)

∫∫
λ1>λ+ϵ

λ2≤λ+ϵ/2

∣∣∣Lt−2,n−1(λ1, θ)Lt−2,n−1(λ2, θ)pθ(λ1, θ)ψt,n(λ1, λ2, θ)dG0(λ1)dG0(λ2)
∣∣∣

converges to 0 when t → +∞. This implies that there exists t̄(n) ≥ t+(n) such

that t ≥ t̄(n) implies∫∫
λ1>λ+ϵ,λ2

Lt−2,n−1(λ1, θ)Lt−2,n−1(λ2, θ)pθ(λ1, θ)ψt,n(λ1, λ2, θ)dG0(λ1)dG0(λ2) < 0

This is true for all θ ∈ Θ and all t ≥ t̄(n). Thus, ξt,n is nonincreasing in θ when

t ≥ t̄(n). By the same arguments as in the proof of part 1, ht,n,1 ≤ ht,n,2 for any

t ≥ t̄(n).

B.6 Proof of proposition 7

The proof relies on a claim analogous to claim A.1. If 1−p is log-supermodular

we have pλθ(1 − p) + pλpθ < 0, which implies that pλθ < 0 and therefore

pλθp < pλpθ. The function ζ defined in the proof of claim A.1 has therefore

its numerator and its denominator negative, and ψθ and ζ therefore have op-

posite signs. The rest of the proof can then be adapted to find α4, β4 ∈ (0, 1)

such that ψ(λ1, λ2, θ) is nonincreasing in θ for all λ1 > λ2 if n ≥ α4t, and

nondecreasing if n ≤ β4t. The remainder of the proof is identical.

C Proofs of section 6

C.1 Proof of proposition 8

Suppose that both agents operate in an environment denoted m. Let us

write ν for the prior probability assigned to m being of type 1, and νt,n,i for the

posterior probability assigned to m being of type 1 by agent i after the history

Hm
t = n. By theorem 5.3 of Banks and Sundaram (1992), it is optimal to play

a myopic policy. Therefore if agent 1 stays in m after witnessing Hm
t = n this
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implies that νt,n,1 ≥ ν. By Bayes’ rule,

νt,n,1
1− νt,n,1

=
ν

1− ν

p(λ1, θ1)
n(1− p(λ1, θ1))

t−n

p(λ2, θ1)n(1− p(λ2, θ1))t−n

The condition νt,n,1 ≥ ν is therefore equivalent to

p(λ1, θ1)
n(1− p(λ1, θ1))

t−n

p(λ2, θ1)n(1− p(λ2, θ1))t−n
≥ 1 ⇔ n ≥ (t− n)

ln
[1− p(λ2, θ1)

1− p(λ1, θ1)

]
ln

[p(λ1, θ1)
p(λ2, θ1)

] (C.1)

Consider for fixed p ∈ (0, 1) the function a(., p) defined on (0, p) ∪ (p, 1) by

a(x; p) =
ln

[1− p

1− x

]
ln

[x
p

]
The function a can be extended by continuity by setting a(p; p) = p/(1− p). It

is then continuously differentiable in x and its derivative in x is of the sign of

1

1− x
ln

[x
p

]
− 1

x
ln

[1− p

1− x

]
(C.2)

Expression C.2 is strictly increasing in p on (x, 1), strictly decreasing in p on

(0, x) and it equals 0 when p = x. The function a is therefore strictly increasing

in x for any p ∈ (0, 1). Hence

ln
[1− p(λ2, θ1)

1− p(λ1, θ1)

]
ln

[p(λ1, θ1)
p(λ2, θ1)

] >

ln
[1− p(λ2, θ1)

1− p1

]
ln

[ p1
p(λ2, θ1)

] >

ln
[1− p2
1− p1

]
ln

[p1
p2

] (C.3)

The first inequality is a[p(λ1, θ1); p(λ2, θ1)] > a[p1; p(λ2, θ1)] and the second in-

equality is a[p(λ2, θ1); p1] > a[p2; p1], using the fact that p is strictly increasing

in θ. Hence equations C.1 and C.3 imply that

n > (t− n)

ln
[1− p2
1− p1

]
ln

[p1
p2

]
which is equivalent to νt,n,0 > ν. Therefore agent 2 finds it optimal to stay

conditional on Hm
t = n. This completes the proof of the first part.

We now prove the second statement. Since all environments are a prior
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identical, there exists β1, β2 independent of the environment such that agent i

has a probability βi of staying forever in a given environment when he selects it

for the first time. Theorem 5.1 of Banks and Sundaram (1992) shows that β2 > 0

and the first part of our result shows that β1 ≤ β2. If β1 = 0 the result is clear:

the expected number of environments experimented by agent 1 is infinite while it

is finite for agent 2. Otherwise, the probability that exactlyM environments are

tried by agent i is equal to βi(1− βi)
M−1, therefore in expectation agent i tries∑+∞

M=1Mβi(1− βi)
M−1 = 1/βi environments. The result follows from β1 ≤ β2.

C.2 Proof of proposition 9

First step We first prove that V (θ1) > V (θ2). Agent 1’s subjective prior

belief attaches a weight 1/J on all pj for j ≤ J − 1 and on p(λ1, θ1). Agent

2’s subjective prior belief attaches a weight 1/J on all pj for 1 ≤ j ≤ J . Since

p(λ1, θ1) > p1 > · · · > pJ−1 > pJ agent 1’s prior dominates agent 2’s prior

according to the monotone likelihood ratio ordering. Hence after any common

historyHt agent 1’s expected reward from selecting any environmentm is strictly

larger than agent 2’s expected reward from m: agent 1’s prior belief is strictly

strongly to the right of agent 2’s prior belief according to Berry and Fristedt

(1985)’s terminology. If agent 1 commits to following an optimal policy played

by agent 2 he therefore expects to reap a strictly higher expected reward at

each period and therefore a strictly higher expected discounted utility. This is

a fortiori true if he follows an optimal policy given his own beliefs. Therefore

V (θ1) > V (θ2).

Second step If T (θ1) = ∅ the result is clear. Otherwise consider j ∈ T (θ1)

and a history on which agent 1 stops experimenting in an environment m of type

j. Suppose first that j = J . By the law of large numbers, on this path the success

rate converges to pJ with probability 1, and since pJ < mink∈{1,··· ,J}{p(λk, θ1)}
the agent’s beliefs over the type of m converge to a degenerate distribution on J .

By the continuity of the Gittins index the dynamic allocation index associated

withm therefore converges to p(λJ , θ1). Since this is the lower bound of agent 1’s

perceived distribution of rewards he clearly drops out in finite time. Therefore

agent 1 stays in m only if the success rate does not converge to pJ , which is a

zero-probability event. This contradicts the assumption j ∈ T (θ1). Hence j < J

and since pj belongs to the support of agent 1’s prior distribution, agent 1’s

beliefs about his future expected reward converge to pj almost surely. Since it

is forever optimal for agent 1 to play arm j, we obtain pj ≥ V (θ1) which further
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implies pj > V (θ2).

Our last step is to show that pj > V (θ2) implies that if an environment

m is of type j then agent 2 has a positive probability of staying in m forever

if he starts experimenting in m. To lighten the notation, but without loss of

generality, suppose that m is the first environment selected by the agent. Banks

and Sundaram (1992) prove in their theorem 5.2 that agent 2 has an optimal

cutoff strategy defined by the sequence of thresholds α2: staying in m at date t

if
∑t

s=1 πs ≥ α2(t) and switching to a new environment otherwise is an optimal

strategy. Consider ϵ > 0 sufficiently small to satisfy the following two conditions:

(i) pj − ϵ > V (θ2); (ii) if the asymptotic success frequency equals pj − ϵ agent

2’s beliefs converge to the degenerate distribution δpj . If the asymptotic success

frequency in m equals pj − ϵ it is therefore asymptotically optimal for agent 2 to

stay in m. This shows that

lim
t→+∞

α2(t)

t
≤ pj − ϵ < pj (C.4)

Consider the martingale Yt =
∑t

s=1 [πs − pj ] and the stopping time ι ∈ N∪{+∞}
defined by ι = inf{t ∈ N | Yt < 0}. Suppose that ι is finite with probability 1.

The optional stopping theorem implies that E[Yι] = E[Y1] = 0. But since ι is

finite with probability 1 we also have E[Yι] < 0, which is a contradiction. Hence,

with some positive probability ι is infinite, i.e.

t∑
s=1

πs ≥ pjt for all t (C.5)

By C.4, there exists N ∈ N such that α2(t) < pjt for all t ≥ N . Consider then a

sequence πs such that πs = 1 for s = 1, · · · , N−1 and
∑t

s=N πs ≥ pj(t−N+1) for

all t ≥ N . Such a sequence occurs in m with positive probability due to C.5. On

this sequence the agent is successful at all dates t < N and therefore it is optimal

to stay in m for all t < N . For all t ≥ N the sequence satisfies
∑t

s=1 πs ≥ α2(t),

thus by definition of α2 it is again optimal to stay in m. Since this is true for all

t ≥ N the agent stays in m forever. This shows that T (θ1) ⊆ T (θ2).

C.3 Proof of proposition 10

First case: Suppose that p1 < p∗ and that agent 1 experiments exactly M

environments. He therefore operates in an environment m for any date t ≥ N

for some threshold N . The environment m is of type j for some j ∈ {1, · · · , J}.
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Take k ≤ τ̃1 and consider a history (t, n) of number of trials and number of

successes obtained in m. Bayes rule delivers

νt,n,1(k)

νt,n,1(τ̃1 + 1)
=

ν(k)

ν(τ̃1 + 1)

p(λk, θ1)
n(1− p(λk, θ1))

t−n

p(λτ̃1+1, θ1)n(1− p(λτ̃1+1, θ1))t−n

which implies

1

t
ln

[ νt,n,1(k)

νt,n,1(τ̃1 + 1)

ν(τ̃1 + 1)

ν(k)

]
=
n

t
ln

[ p(λk, θ1)

p(λτ̃1+1, θ1)

]
+
t− n

t
ln

[ 1− p(λk, θ1)

1− p(λτ̃1+1, θ1)

]
Suppose that the asymptotic success rate n/t in m converges to pj . The

threshold p∗ ∈ [p(λτ̃1+1, θ1), p(λτ̃1 , θ1)] is defined by

p∗ ln
[ p(λτ̃1 , θ1)

p(λτ̃1+1, θ1)

]
+ (1− p∗) ln

[ 1− p(λτ̃1 , θ1)

1− p(λτ̃1+1, θ1)

]
= 0

which implies that

p∗ ln
[ p(λk, θ1)

p(λτ̃1+1, θ1)

]
+ (1− p∗) ln

[ 1− p(λk), θ1)

1− p(λτ̃1+1, θ1)

]
≤ 0

since p(λk, θ1) ≥ p(λτ̃1 , θ1) ≥ p∗. Since pj ≤ p1 < p∗ this further implies

pj ln
[ p(λk, θ1)

p(λτ̃1+1, θ1)

]
+ (1− pj) ln

[ 1− p(λk, θ1)

1− p(λτ̃1+1, θ1)

]
< 0

Hence

lim
t→+∞

ln
[ νt,n,1(k)

νt,n,1(τ̃1 + 1)

ν(τ̃1 + 1)

ν(k)

]
= −∞

which implies that the ratio νt,n,1(k)/νt,n,1(τ̃1 + 1) converges to zero. Since

this is true for all k ≤ τ̃1, the agent’s beliefs regarding the expected reward

in m converge to a limiting distribution whose support is bounded above by

p(λτ̃1+1, θ1).

By continuity of the Gittins index, the Gittins index r(m) associated with

the environment m therefore converges to a value that is lower than p(λτ̃1+1, θ1).

By definition of τ̃1, p(λτ̃1+1, θ1) < V (θ1). Hence the Gittins index r(m) falls

strictly below V (θ1) in finite time, which implies that it is optimal for agent 1 to

leave m. Thus the asymptotic success rate in m does not converge to pj . This

is a zero-probability event. Hence, for any finite M , the agent tries exactly M

environments with probability zero. This proves the first part.
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Second case: Suppose that p1 > p∗ and that the agent operates in an envi-

ronment m of type 1. Then the asymptotic success rate in m equals p1 almost

surely. The reasoning used in the first part shows that agent 1’s beliefs over

the expected reward in m converge to a limiting distribution whose support is

bounded below by p(λτ̃1 , θ1). By definition of τ̃1 we have p(λτ̃1 , θ1) > V (θ1).

Hence, the arguments used in the proof of proposition 9 imply that agent 1 stays

forever in m with positive probability. The rest of the proof follows an argument

from Banks and Sundaram (1992) (see their corollary 5.2). All environments are

a priori identical and have a positive probability of being of type 1. Since agent 1

has a positive probability of staying forever in that case, there exists β > 0 such

that when agent 1 selects a new environment he stays forever in this environment

with probability β > 0. The probability that M environments are tried along

the trajectory is then equal to β(1−β)M−1, and the expected number of environ-

ments tried equals
∑+∞

M=1Mβ(1− β)M−1 = 1/β which is finite. In particular,

almost surely the agent tries only a finite number of environments.

D Proofs of section 7

D.1 Proof of proposition 12

By Bayes’ rule,

gt1,n1 [λ | Ht2,2 = n2] =
g0(λ)

∫∫
Θ2 Lt1,n1(λ, θ1)Lt2,n2(λ, θ2)dF0,1(θ1)dF0,2(θ2)∫∫∫

Λ×Θ2 Lt1,n1(λ
′, θ1)Lt2,n2(λ

′, θ2)dG0(λ′)dF0,1(θ1)dF0,2(θ2)

And

gt1,n1(λ) =
g0(λ)

∫
Θ Lt1,n1(λ, θ1)dF0,1(θ1)∫∫

Λ×Θ Lt1,n1(λ
′, θ1)dG0(λ′)dF0,1(θ1)

Thus,

gt1,n1 [λ | Ht2,2 = n2]

gt1,n1(λ)
=

∫
Θ
Lt2,n2(λ, θ2)dF0,2(θ2) (D.1)

×
∫∫

Λ×Θ Lt1,n1(λ
′, θ1)dG0(λ

′)dF0,1(θ1)∫∫∫
Λ×Θ2 Lt1,n1(λ

′, θ1)Lt2,n2(λ
′, θ2)dG0(λ′)dF0,1(θ1)dF0,2(θ2)

Define α5 = sup(p). When n2 ≥ α5t2, the function
∫
Θ Lt2,n2(λ, θ2)dF0,2(θ2) is

nondecreasing in λ. By equation D.1, this proves the part 1. Part 2 is clear.
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To prove part 3, notice that by Bayes’ rule,

ft1,n1,1[θ1 | Ht2,2 = n2]

ft1,n1,1(θ1)
=

∫∫
Λ×Θ Lt1,n1(λ, θ1)Lt2,n2(λ, θ2)dG0(λ)dF0,2(θ2)∫

Λ Lt1,n1(λ, θ1)dG0(λ)

(D.2)

×
∫∫

Λ×Θ Lt1,n1(λ, θ
′
1)dG0(λ)dF0,1(θ

′
1)∫∫∫

Λ×Θ2 Lt1,n1(λ, θ
′
1)Lt2,n2(λ, θ2)dG0(λ)dF0,1(θ′1)dF0,2(θ′2)

The function
∫
Θ Lt2,n2(λ, θ2)dF0,2(θ2) is nondecreasing in λ when n2 ≥ α5t2.

In addition, claim A.1 can be adapted to find β5 ∈ (0, 1) such that n1 ≤ β5t1

implies that the function Lt1,n1(λ, θ1)/Lt1,n1(λ, θ
′
1) is nonincreasing in λ for any

pair (θ1, θ
′
1) such that θ1 > θ′1. For any θ1 > θ′1, lemma A.1 shows that[ ∫

Λ
Lt1,n1(λ, θ1)

∫
Θ
Lt2,n2(λ, θ2)dF0,2(θ2)dG0(λ)

][ ∫
Λ
Lt1,n1(λ, θ

′
1)dG0λ

]
≤
[ ∫

Λ
Lt1,n1(λ, θ

′
1)

∫
Θ
Lt2,n2(λ, θ2)dF0,2(θ2)dG0(λ)

][ ∫
Λ
Lt1,n1(λ, θ1)dG0λ

]
which proves that the function∫∫

Λ×Θ Lt1,n1(λ, θ1)Lt2,n2(λ, θ2)dG0(λ)dF0,2(θ2)∫
Λ Lt1,n1(λ, θ1)dG0(λ)

is nonincreasing in θ1. This property, together with equation D.2, completes the

proof. The proof of part 4 is analogous.
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