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Abstract

One of the most robust �ndings in the literature using data on horseraces bets is that

odds associated to horses re�ect their chances of winning very well, with the exception that

favorites are underbet while outsiders are overbet. Expected utility theory and behavioral

theories of decision under risk compete to explain this �nding. This paper seeks to discrim-

inate between the two classes of models by testing which is the most suited to explaining

the behavior of bettors observed in the data. Using a unique dataset of bets on horseraces

in France, I �nd that behavioral theories of decision under risk better �t my data than

expected utility. This result shows that behavioral theories provide a better representation

of choice behavior than expected utility.
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1 Introduction

Horserace betting markets provide a real-life laboratory to study decisions taken in situations of

risk. First, wagering on a horse involves making a choice between clearly identi�ed alternatives,

each alternative being associated with a monetary outcome. Second, the occurring alternative

is observed publicly after a short period of time. Third, choices are made repeatedly by a large

number of participants. Fourth, extensive information is available on probabilities of outcomes.

Horserace betting markets hence o�er the opportunity to test the theoretical framework of deci-

sion under risk in a simple, yet real-life situation. In particular, they share many characteristics

with very simple �nancial markets.

A large number of papers have taken advantage of these characteristics. They have studied

whether prices associated to horses (odds) re�ect their intrinsic values (chances of winning in a

given race). One of the most robust �ndings of the literature is that odds associated to horses

indeed re�ect their intrinsic values very well, with the exception that favorites (horses with

a high chance of winning) tend to be underbet while outsiders (horses with a relatively small

chance of winning) are overbet (Sauer (1998)). As a result, the expected returns on outsiders are

lower than on favorites. An abundant literature tries to explain the existence of this empirical

regularity, called the favorite-longshot bias (see Ottaviani and Sorensen (2008) for a review of the

main explanations). In particular, two theories of decision under risk compete to this purpose.

On the one hand, the standard theory of individual choice in economics (expected utility

theory by von Neumann and Morgenstern (1947)) can rationalize the bias by posing that bet-

tors have, at least locally, a convex utility function for money outcomes. On the other hand,

behavioral theories are able to explain the bias by incorporating that decision makers transform

probabilities when assessing the value of risky prospects.

The goal of this paper is to discriminate between these two classes of models. The question

under study seeks to identify which model best explains the favorite-longshot bias. In a broader

perspective, it tests whether expected utility provides a su�ciently accurate representation of

actual choice behavior or whether it should be replaced by alternative theories (see Starmer

(2000)). Using the wrong model might prevent from understanding commonly observed be-

haviors. Behaviors which can only be explain using behavioral models include for example the
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equity premium puzzle in �nance, the choice of some menu of premium/deductible in insurance

or the labor supply of cab drivers in labor economics.

Our analysis relies on a unique dataset of bets on horseraces of the French betting operator

from 2013 to 2015. The main novelty of the paper lies in the dataset. It is used to study the

existence of the favorite-longshot bias in France and determine whether the results of Jullien

and Salanié (2000) hold in a di�erent context and at a di�erent time period.

I �rst show that the favorite-longshot bias exists in France. I further �nd that behavioral

theories of decision under risk, that is both rank-dependent and cumulative prospect theories

are better suited to explaining the behavior of bettors observed in the data than expected utility.

This result provides evidence that bettors weight probabilities non-linearly when making choices.

Using cumulative prospect theory, I �nd signi�cant weighting of probabilities in the domain of

losses and linear weighting of probabilities in the domain of gains, which is consistent with the

result of Jullien and Salanié (2000) but contradicts results from experiments which �nd similar

weighting of probabilities in the gains and losses domains (Kahneman and Tversky (1992),

Abdellaoui (2000)).

This paper �ts into a considerable theoretical and experimental literature motivated by

the observation that, in laboratory experiments, people make choices systematically inconsis-

tent with expected utility theory (Allais (1953), Kahneman and Tversky (1979)). Cumulative

prospect theory has emerged as the favorite model from the experimental literature. Evidence

that decision makers weight probabilities non linearly as in cumulative prospect theory were

provided by many experiments (see Camerer and Ho (1994), Tversky and Kahneman (1992),

Wu and Gonzalez (1996, 1999) and Abdellaoui (1998)). The theory was also found to be able to

rationalize behaviors observed in laboratories that could not be explained by expected utility.

One such example is probabilistic insurance (see Wakker, Thaler and Tversky (1997)). This

type of insurance policy involves a small probability (say 1 %) that the consumer will not be

reimbursed. According to expected utility theory (and whatever the concavity of the utility

function), people should pay approximately 99% times as much for probabilistic insurance as

they pay for full insurance. But experimental responses show that people are willing to pay much

less to compensate for the low chance that the claim will not be paid. This behavior cannot be

explained by expected utility but is consistent with the overweighting of small probabilities of
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prospect theory.

Some people have questioned whether the �ndings of the experimental literature generalize

to real-world data (see List (2004), Levitt and List (2008)). They believe that biases are less

likely in the presence of large stakes, experience and competition.

Existing studies using real-world settings typically rely on insurance, �nance and bets or

games market data. While Cicchetti and Dubin (1994) present evidence that decisions to pur-

chase insurance against the risk of telephone line malfunction at home are consistent with

expected utility theory, O'Donoghue et al. (2010) show that non linear probability weighting

plays a role in the behavior of households in the choice of auto and home insurance. Kliger and

Levy (2009) also �nd that cumulative prospect theory better �ts their data than expected utility

and rank-dependent utility relying on data on call options on the S&P500 index. Using data

from game shows, Post et al (2008) show that preferences are reference dependent so that they

exhibit characteristics of the cumulative prospect theory model. List (2003, 2004) provides evi-

dence that although inexperienced consumers behave as in prospect theory, market experience

brings experienced traders' behavior close to neoclassical predictions. On the contrary Pope and

Schweitzer (2011) show that highly experienced professional golfers who face high stakes payo�s

and intense competition exhibit loss aversion as predicted by prospect theory.

My paper is closely related to the literature using horserace data. Jullien and Salanié (2000)

show, by focusing on win bets in the UK, that cumulative prospect theory describes the behav-

ior of a representative agent better than expected utility and rank-dependent utility theories.

However contrary to the usual inversed S-shaped probability weighting function, they �nd little

evidence for the existence of a certainty e�ect and of a change in concavity of the probability

weighting functions that they estimate. They also establish that rank-dependent utility does not

improve on expected utility. The present paper seeks to con�rm their results by reestimating

their model on a di�erent dataset.

Snowberg and Wolfers (2010) use an impressively large dataset of pari-mutuel bets in the

United-States to test predictions derived for expected utility and cumulative prospect theories

in the particular case of win bets on complex bets. Their approach is based on that the two

theories yield di�erent implications for the prices of complex bets so by comparing predictions

with real prices, the best model can be identi�ed. They �nd that the model with non linear
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probability weighting provides the best description of the data, which suggests that prospect

theory permits a better description of the data than expected utility.

The present paper is organized as follows. Section 2 explains how horseraces bets are orga-

nized in France. Section 3 describes the data. Section 4 introduces the model and the estimation

procedure. Section 5 presents the results. The last section concludes.

2 Horse race betting in France

The betting market on horseraces in France is exclusively a pari-mutuel system. The concept

of pari-mutuel consists in pooling together all bets corresponding to a race and a bet type,

removing a share to cover the taxes and expenses of the betting operator and redistributing

the remaining among winning bettors in proportion to their bets. Final payo�s hence depend

exclusively on the total pool, the share kept by the betting operator (the �take�)2 and the stakes

attracted by each horse.

The more stakes a horse attracts relative to the total pool, the lower the payo� of a bet on

this horse. Payo�s on horses are called odds. In the simplest type of bets (which are the focus

of the paper), which consist in �nding the winner of a given race, odds of 1.2 on a given horse

and race means that a 1 unit winning bet on that horse returns the bet (1) plus 1.2. Odds hence

correspond to net returns of a unit bet. A horse cannot have odds inferior to 0.1.

For a race happening on a particular day, the market opens online as soon as the ultimate

race of the previous day ends. For a bettor which prefers to go to a specialized store, it starts

on the day of the race at the opening of stores. A bettor at the track can only bet about thirty

minutes before the beginning of the race. The market closes right before the start of the race.

Because of the way odds are computed in the pari-mutuel system, bettors only have access to

temporary odds which are computed with the current state of bets and are updated about every

minute online.

2In addition to the �take�, French operators also enjoy �breakage�, which is the gain from rounding payo�s
downwards to the nearest ten cents.
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3 Data

Data were collected from pmu.fr between April 2013 and May 2015. PMU (pari-mutuel urbain)

is the main operator of bets in France. Online, it gathers 84.8% of the total pool and in-store, it

is a legal monopoly. The dataset records information on bets, races, horses and tracks for races

which were supports of bets o�ered by the PMU. It contains 33,196 races.

For each race, the dataset encompasses the �nal win payo� of each horse, its rank in the

race and many of its characteristics such as the number of races run by the horse in its career

or the amount won. In addition to the time of day, date and track, races are also characterized

by their discipline and types. Data also includes the total pool, dividends of winning horses,

the number of winners and information on tracks. The data only contains payo�s of each horse

for wining bets, which are the focus in this paper.

Since I am interested in modeling the process of decision making regarding the choice of a

speci�c horse in a race, I drop the 7,919 races in which two or more horses in a given race belong

to a team, which happens when horses have the same owner or the same trainer. In this case

all the horses of the team have the same payo� and if one of them wins the race, a bet on any

of the horses in the team also wins. Hence the payo� of a horse that is part of a team does not

re�ect its probability of winning, but rather the probability that any horse in the team wins.

I also remove races in which several horses arrive in the �rst position, called deadheats,

because I model a race in which only one horse wins the race. I drop races for which payo�s

are incomplete or erroneous. It includes races which are not recorded as being over, in which at

least one running horse has a missing payo� and for which the �nal payo� of the winning horse

does not correspond to the dividend. I am left with 23,462 races.

As the following table shows, the average number of races per day amounts to 32. During

some days, 80 races take place, while on other days only 13 do. The average number of running

horses in a given race is 12. The minimum is 2 and the maximum 24. Half of the races count

between 9 and 14 running horses.

The distribution of odds covers a wide range. The maximum reaches 998 while the minimum

is 0.1. The median amounts to 15.4 and the mean to 27. 90% of odds range between 0.1 and

68.4.
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< Table 1 about here >

The following �gure shows that the sample contains large favorites, with odds between 0.1

and 0.5 (0.2% of the sample), and very long outsiders with odds above 50 (19% of the sample).

< Figure 1 about here >

Using these de�nitions, 64% of large favorites and 0.6% of very long outsiders won their

race. Alternatively, de�ning large favorites as horses that attract twice more bets than the

second-more-bet horse in their race, large favorites win 44% of the time.

4 Model and estimation procedure

4.1 The theoretical model

The model is similar to Jullien and Salanié (2000). It describes the decision of a representative

bettor who bets a in a given race and is endowed with an initial wealth M3. The choice of

a particular horse in the race depends only on its probability of winning and �nal odds. In a

given race c with N horses, the bettor is hence presented with a menu of probabilities and odds

((O1, p1), (O2, p2), ...(ON , pN ))c, probabilities being non negative and summing to one.

I assume that the menu is known to the bettor when he makes his choice. This assumption

is potentially problematic since �nal odds are not known until the beginning of the race and the

bettor does not have perfect knowledge of probabilities of winning. However, previous studies

of horserace bettors show that they are very sophisticated and exploit the sheer amount of

information available to infer chances of winning of horses. Additionally, odds are quite stable

at the end of the betting period.

Writing Hi the action of betting on horse i, the overall value of a bet on horse i, W (Hi), is

a number such that the bettor prefers horse i to horse j or is indi�erent between horses i and

j if and only if W (Hi) ≥ W (Hj). The representative bettor is rational in that he bets on the

horse with the highest overall value.

3The data do not contain information on the amount bet or on the wealth of bettors.
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Furthermore, I assume that the race is only won by one horse. In this perspective, the few

races won by several horses were removed from the sample.

Given the stated assumptions, bettors continue to bet in a given race until odds make them

indi�erent between betting on any horse in the race and not betting. So in equilibrium:

∀i ∈ 1, ..., N, W (Hi) = w, w constant (1)

In general terms, the overall value of a bet on horse i can be written :

W (pi, a, Oi) = ϕ+(pi) ∗ u(M + aOi) + ϕ−(1− pi) ∗ u(M − a) (2)

The speci�c expression of the overall value of a bet on horse i depends on the model of

decision making studied. In expected utility, ϕ+(pi) = ϕ−(pi) = pi. In rank-dependent theory,

ϕ−(1 − pi) = 1 − ϕ+(pi) and in cumulative prospect theory M = 0, so that I assume that the

reference point is not betting4. More details on each model are given in Appendix A.

The model is solved using the procedure of Jullien and Salanié (2000) which consists in

computing w and then the probability of winning of the horse which actually won the race (p1),

which is in turn used to compute the likelihood function. The procedure used to obtain p1 is

explained for each model in Appendix B.

4.2 Estimation

Let θ, α, β be the parameters of the utility and of the probability weighting functions. pr1 is the

probability of winning of the horse which actually won race r, with r = 1, ...,M . For each r, the

likelihood to observe horse 1 win the race is l(θ, α, β;Or1) = p1(Or1; θ, α, β).

Because outcomes of races are independent, the probability of observing the sample under

study, assuming that the expressions of p1 derived from the model are correct, is the product of

the M individual densities, which corresponds to the following likelihood function:

M∏
r=1

p1(Or1; θ, α, β) = L(θ, α, β|Or1)

Hence the log-likelihood function:

4This assumption is in line with the literature which commonly assumes that the reference point is the status

quo. For a discussion on how people think about gains and losses, see Köszegi and Rabin (2006, 2007, 2009).
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LL = lnL(θ, α, β|Or1) =

M∑
r=1

ln p1(Or1; θ, α, β)

The maximum likelihood estimator has the usual asymptotic properties. It is consistent,

asymptotically normal, asymptotically e�cient and invariant.

θ̂ ∼ N(θ0, [I(θ0)]−1), I(θ0) = −E0(∂2 lnL/∂θ0∂θ
′
0) = −E0(∂ lnL/∂θ0 ∗ ∂ lnL/∂θ′0)

Standard-errors are computed both using a bootstrap procedure and the previous formula.

4.3 Functional form of the utility function

Following Jullien and Salanié (2000), I assume that the utility function has the following CARA

form throughout the paper: u(x, θ) = 1−e−θx
θ .

The CARA form allows the estimation of the level of absolute risk aversion θ under the

assumption that it is constant. Bettors are risk-loving if θ < 0 and risk-averse if θ > 0.

The expression of u retained is convenient since M , which is not observed, cancels out in the

expression of the probability used in the likelihood function.

4.4 Functional forms of the probability weighting functions

The common functional forms presented in Table 2 are tested. More information on these

probability weighting functions are available in Appendix C.

< Table 2 about here >

5 Results

5.1 The favorite-longshot bias

The favorite-longshot bias is the �nding that betting on favorites (horses with small odds) yields

a higher expected returns than betting on longshots (horses with relatively high odds). It has

been shown in a large number of papers, starting with Gri�th (1949). It has been found across

di�erent types of races and at di�erent times in North America (McGlothin(1956), Weitzman

(1965), Ali (1977), Snyder (1978), Asch et al. (1982), Snowberg and Wolfers (2010)) where
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the pari-mutuel system prevails, in the UK in both the pari-mutuel and bookmaker systems

(Vaughan Williams and Paton (1997), Jullien and Salanié (2000)), in Australia in both the

pari-mutuel (Coleman (2002)) and bookmaker systems (Bird et al. (1987)) and in New Zealand

in the pari-mutuel system (Coleman (2002), Gandar et al. (2001)).

The �rst result of the paper is that the favorite-longshot bias also exists in France. The

expected returns for a 1-unit bet on horse i is Ri = πi ∗ Oi + (1 − πi) ∗ (−1), where πi is the

probability of winning of horse i and Oi corresponds to its �nal odds. Probabilities of winning

of horses, which is the proportion of times the horse would win the same race repeated an

in�nitely large number of times, are unknown so I compute rates of returns using the approach

commonly adopted in the literature (see Coleman (2004)), which consists in grouping all horses

of the dataset by either intervals of odds or favorite order (the favorite is in the �rst group, the

second favorite in the second group, etc.) and computing the percentage of winners and the

average odds in each group.

Expected returns are graphed in the following �gure, horses were grouped by odds percentiles

and data are presented on a log-odds scale.

< Figure 2 about here >

Figure 2 shows that returns are not equated across betting odds: betting on favorites yields

a higher rate of returns than betting on outsiders. The expected returns of betting horses with

odds of 127 to 1 is −0.6, whereas it is −0.07 for horses with odds 1.43. Hence payo�s of favorites

are not low enough to compensate for their high probabilities of winning, or equivalently favorites

are underbet compared to their probability of winning. On the contrary, payo�s of outsiders

are not high enough to compensate for their low probabilities of winning, or equivalently, they

are overbet.

Hence, in a simple model with linear utility and probability weighting functions, the data

shows that, in equilibrium, rates of returns are not equalized across horses in a race. Many

propositions have been made to explain this bias, one of which being that the simple model does

not properly account for the tastes and beliefs of bettors.
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5.2 Tests of models of decision making under risk

5.2.1 Expected utility model

The results of the parameters obtained in the expected utility framework, as well as the maxi-

mum value of the log-likelihood function are presented in table 3.

< Table 3 about here >

aθ is signi�cantly negative and has a small absolute value, meaning that at least statistically

and in the income range in which I test them, bettors exhibit a small and signi�cant taste for

risk. The parameter is smaller to the one obtained by Jullien and Salanié (2000) (−0.055) but

similar to that of Snowberg and Wolfers (2010) who �t their data with a CARA utility function

of parameter −0.017.

A bet of e20 on a horse with odds 10 and probability of winning 25% is equivalent to the

lottery winning e200 with probability 25% and loosing 20 with probability 75%. The estimated

risk-attitude parameter makes a bettor indi�erent between this lottery and the sure amount of

e38. A risk neutral bettor would be indi�erent between the same lottery and the sure amount

e35 so the behavior of bettors exhibits some risk-love.

5.2.2 Rank-dependent utility model

The results for all functional forms of the probability weighting functions tested are presented

in Table 4 and graphed in Figure 3.

< Table 4 and Figure 3 about here >

The risk-attitude parameter of the utility function is negative, statistically signi�cant and

small in every speci�cation of the rank-dependent utility model.

The statistically signi�cant power coe�cient di�ers from and is slightly inferior to 1 (column

1 of Table 4) so ϕ(p) > p, which re�ects optimism. In the Cicchetti and Dubin function (column

2), a1 is not signi�cantly di�erent from 1 although it is precisely estimated so p0 is not identi�ed

and we are back to the expected utility model. In the Lattimore, Baker and Witte function
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(column 3), γ does not signi�cantly di�er from 1 while δ is large and statistically signi�cantly

di�erent from 1 at the 5% level. The function is concave and above the 45 degree line, which

suggests optimism. In the Prelec function (column 4), α is close to but statistically di�erent

from 1, β is large and also statistically di�erent from 1. The function is convex and below the

45 degree line, showing pessimism. In the Kahneman and Tversky function (column 5), γ is

close to but statistically di�erent from 1.

All models are nested within the expected utility model. Likelihood ratio tests between

the latter and the rank-dependent utility models show that the rank-dependent utility model

statistically signi�cantly better �t the data than the expected utility model in four speci�cations

(power, Lattimore et al., Prelec and Kahneman and Kahneman and Tversky). Hence the �rst

conclusion of the analysis is that the rank-dependent utility model better �ts the data than the

expected utility model. This conclusion di�ers from Jullien and Salanié (2000) who concluded

that rank-dependent utility models did not improve on the expected utility model because they

found that only the Prelec speci�cation �tted their data better than expected utility.

The results do not permit to conclude on the overall attitude toward risk of bettors, which

combines both the risk attitude parameter of the utility function and the weights associated

to probabilities. As Figure 3 suggests, the power and the Kahneman and Tversky functions

are extremely close to the diagonal. Additionally, Table 4 shows that attitude toward risk is

similar in the expected utility model and the rank-dependent models with power and Kahneman

and Tversky weighting functions. The di�erence between the expected utility model and these

models hence does not change anything in terms of behavior of bettors: bettors exhibit a small

taste for risk. In Lattimore et al., the risk attitude parameter suggests that bettors are risk-

lovers, which is reinforced by the overweighting of probabilities. In, the Prelec speci�cation,

the risk attitude parameter suggests risk-love but bettors underweight probabilities so that in

the end their behavior exhibits risk-aversion. To illustrate, the estimated parameters in the

Prelec case makes a bettor indi�erent between the lottery winning e200 with probability 25%

and loosing 20 with probability 75% and the sure amount of e22. In the Lattimore et al.

speci�cation, it makes the bettor indi�erent between the same lottery and the sure amount of

e54. Because risk-neutrality corresponds to the sure amount of e35, the bettor exhibits risk

aversion in the �rst case and risk-love in the second. I am not able to discriminate between
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the models within the rank-dependent theory because AIC and BIC criteria and Vuong tests

between models are inconclusive. I can only establish that the Prelec model, which is nested

within the power model, performs better than the power function.

5.2.3 Cumulative prospect theory

The results for all functional forms of the probability weighting functions tested are presented

in Table 5. Probability weighting functions for gains are graphed in Figure 4 and probability

weighting functions for losses in Figure 5.

< Table 4 and Figures 4 and 5 about here >

The risk-attitude parameter of the utility function is negative, statistically signi�cant and

small in every speci�cation of the cumulative prospect theory model.

The statistically signi�cant power coe�cient di�ers from and is slightly above 1 in the power

probability weighting function of gains and below 1 in the power probability weighting function

of losses (column 1 of Table 5). In the case of gains, it is very close to the diagonal, showing

almost no weighting of probabilities. In the case of losses, it is well above the 45-degree line,

showing clearly that bettors overweight probabilities of losses, which re�ects pessimism.

In the Cicchetti and Dubin function (column 2), a1 is not signi�cantly di�erent from 1 in the

case of gains so p0 is not identi�ed and the model is equivalent to expected utility. The estimated

parameters of the Cicchetti and Dubin probability weighting function of losses have very high

standard-errors so that I cannot draw any conclusion from their values. Parameters are also too

imprecisely estimated in the Lattimore, Baker and Witte (column 3) and the Prelec (column

4) speci�cations to draw any conclusion. The statistical signi�cance of the parameters does not

authorize to reject expected utility even if likelihood ratio tests favor these speci�cations over

expected utility.

In the Kahneman and Tversky function (column 5), γ does not di�er from 1 in the probability

weighting function of gains but it does concerning the probability weighting function of losses,

with γ′ = 0.77. The function slightly overweights small probabilities and underweights high

probabilities, being hence inverse S-shaped. The curvature of the function is less pronounced
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than in experimental studies such as Camerer and Ho (1994) who estimate a probability weight-

ing function of gains with parameter 0.56, Tversky and Kahneman (1992) who found 0.61 for

gains and 0.69 for losses, Wu and Gonzalez (1996) who found 0.71 for gains and Abdellaoui

(2000) who found 0.60 for gains and 0.70 for losses. I hence �nd more sensitivity to changes in

probabilities far from 0 and 1 than those studies and less pronounced certainty and possibility

e�ects.

Likelihood ratio tests between the expected utility model and the cumulative prospect theory

models show that the latter signi�cantly better �ts the data than the former in all speci�cations

so that expected utility is clearly rejected. This result is consistent with the conclusions of

Jullien and Salanié (2000).

Jullien and Salanié (2000) further explain that their data does not support changing concavity

in the probability weighting functions and that the probability weighting function for losses is

concave while the weighting function for gains is linear. They �nd this result surprising given

the many experiments that �nd evidence of changing concavity. Camerer (2000) interprets

this result as a new explanation for the favorite-longshot bias : �Bettors like longshots because

they have a convex utility and weight their high chances of losing and small chances of winning

roughly linearly. But they hate favorites because they like to gamble (u(x) is convex), but are

disproportionately afraid of the small chance of losing when they bet on a heavy favorite�.

I do not reach the same conclusion. I �nd like Jullien and Salanié (2000) a clear di�erence

between probability weighting of gains, which is quasi linear, and probability weighting of losses,

which departs from the 45-degree line. The power model gives me the same result as Jullien and

Salanié (2000) but I also estimate the Kahneman and Tversky function, which was not estimated

by Jullien and Salanié (2000) and tells a di�erent story. I indeed estimate an inverse S-shaped

function for losses in this model. I am not able to discriminate between the two models. AIC

and BIC of the power and the Kahneman and Tversky models are very close. Furthermore, the

Vuong statistic for non nested models lies in the inconclusive region. I hence cannot conclude on

the way bettors weight probabilities. I also cannot conclude on the risk attitude of bettors since

the two models have di�erent implications in terms of behaviors of bettors. To illustrate, the

estimated parameters in the Kahneman and Tversky model makes a bettor indi�erent between

the lottery winning e200 with probability 25% and loosing 20 with probability 75% and the sure
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amount of e40. In the power model, it makes the bettor indi�erent between the same lottery

and the sure amount of e31. In the �rst-case the bettor hence exhibits a slightly risk-loving

attitude. In the second case he is clearly risk-averse.

6 Conclusion

This paper relies on the model of Jullien and Salanié (2000) to compare the �t of expected

utility theory, rank-dependent utility theory and cumulative prospect theory to French data

on horserace bets. It shows that the favorite-longshot bias exists in France. It additionally

establishes that both rank-dependent utility and cumulative prospect theory are better suited

to explaining the data than expected utility, which suggests that bettors weight probabilities

non-linearly when they make choices. In rank-dependent utility, my results contradict those of

Jullien and Salanié (2000) who found no improvement in �t with this model. In cumulative

prospect theory, my results con�rm those of Jullien and Salanié (2000).

My analysis however su�ers from one limitation. I do not have data on individual bettors

so I have to study the behavior of a representative bettor. This is potentially problematic since

bettors might di�er with respect to their attitude toward risk and their beliefs.

Two interesting research paths could be pursued to complement the study. First, I do not

test several shapes of the value function but rather focus on the probability weighting function.

Jullien and Salanié (2000) initiated this possible venue of research by testing a HARA utility

function. However because they did not have data on the wealth of bettors, they could not

pursue further and �nally choose to use a CARA utility function for convenience. I face the

same limitations due to the data. Second, my data does not allow to test loss aversion, which is

one of the main characteristics of cumulative prospect theory. Information on the amount bet

could allow to follow this path in future research.

15



Table 1: Summary statistics

Variable Mean Std. Dev. Min. Max. N

Races per day 32 9.29 13 80 735
Running horses per race 12 3.31 2 24 23,464
Odds 27 31.79 0.1 998 279,792

Figure 1: Distribution of odds (90 % of odds only)
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Table 2: Probability weighting functions

Name Expression Restrictions on parameters

Power ϕ(p) = pα α > 0

Kahneman and Tversky (1992) ϕ(p) = pγ

[pγ+(1−p)γ ]1/γ γ > 0

Cicchetti and Dubin (1994) ϕ(p)
1−ϕ(p) = ( p

1−p )a1 ∗ ( p0
1−p0 )1−a1 a1 > 0, p0 ∈ [0, 1]

Prelec (1998) ϕ(p) = e−β(− ln p)α 0 < α < 1, β > 0

Lattimore, Baker and Witte (1992) ϕ(p) = δpγ

δpγ+(1−p)γ γ > 0, δ > 0
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Figure 2: Rates of returns by odds
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Table 3: Expected utility model

EU model

aθ -0.014***
(0.0011)

Max LL -45,977.315

19



Table 4: Rank-dependent utility models

Power CD LBW Prelec KT

aθ -0.011*** -0.011*** -0.016*** -0.013*** -0.011***
(0.0019) (0.0026) (0.0029) (0.0038) (0.0018)

α 0.97*** 0.91***
(0.014) (0.045)

a1 0.99***
(0.026)

p0 0.99***
(0.22)

γ 1.05*** 0.98***
(0.035) (0.011)

δ 1.48***
(0.237)

β 1.28***
(0.077)

Max LL -45,975.289 -45,974.628 -45,972.658 -45,972.481 -45,975.363

Figure 3: Rank-dependent theory - Estimated probability weighting functions
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Table 5: Cumulative Prospect Theory models

Power CD LBW Prelec KT

aθ -0,017*** -0.016*** -0.015*** -0.0089** -0.014***
(0.0027) (0.0048) (0.0038) (0.0044) (0.0021)

α 1,078*** 0.75***
(0.036) (0.26)

β 0,474*** 1.79
(0.123) (1.35)

α′ 0.99
(2.94)

β′ 0.084
(0.40)

α1 1.05***
(0.15)

p0 0.99***
(0.25)

α′1 0.74
(0.85)

p′0 0.99***
(0.31)

γ 1.05*** 0.99***
(0.085) (0.012)

δ 0.39
(1.00)

γ′ 0.96 0.77***
(2.35) (0.072)

δ′ 16.94
(123.00)

Max LL -45,972.178 -45,971.818 45,970.667 -45,970.320 -45,972.613
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Figure 4: Cumulative Prospect Theory - Estimated probability weighting functions for gains

Figure 5: Cumulative Prospect Theory - Estimated probability weighting functions for losses
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Appendices

A Overall value of a bet in each model

The representative bettor bets a in each race and is endowed with an initial wealth M . The

choice of a particular horse depends only on the probability of winning of the horse and �nal

odds written (O1, p1), (O2, p2), ...(ON , pN ) for the N horses of a race.

A.1 Expected utility model

The �nal state of endowment of a bettor wagering on horse i can either be M − a if the horse

loses the race or M + aOi if the horse �nishes �rst. The former occurs with probability 1 − pi

and the latter with probability pi. The overall value of a bet on horse i is hence W (Hi) =

pi ∗ u(M + aOi) + (1 − pi) ∗ u(M − a), where u is a continuous and strictly increasing utility

function with u(0) = 0.

A.2 Rank-dependent utility model

In the rank-dependent utility model (Quiggin (1982)), the overall value of a prospect with two

possible outcomes equals the utility derived from the worst outcome, which the decision maker

is sure to get, plus the possible increase in utility from obtaining the best outcome, weighted by

the weighted probability of obtaining the best outcome.

The overall value of a bet on horse i is hence W (pi, a,M,Oi) = ϕ(pi) ∗ u(M + aOi) +

(1 − ϕ(pi)) ∗ u(M − a), where ϕ is the probability weighting function, continuous and strictly

increasing from [0, 1] to [0, 1] and satisfying ϕ(0) = 0 and ϕ(1) = 1.

A.3 Cumulative prospect theory model

The cumulative prospect theory model developed by Kahneman and Tversky (1992) departs

from the rank-dependent utility model in that outcomes are perceived as gains and losses with

respect to a reference point. Additionally, the value function di�ers for gains and for losses. It is

generally concave for gains and convex for losses; and steeper for losses than for gains to re�ect

loss aversion.

The probability weighting function overweights small probabilities and underweights mod-

erate and high probabilities. It is inverse S-shaped, meaning concave then convex. The more
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curved it is, the more sensitivity to small probabilities changes near the extreme of the probabil-

ity scale. This property is called diminishing sensitivity. The point where the function intersects

the diagonal lies at a probability level of approximately 1/3.

A winning bettor obtains aOi. This happens with probability pi. Losses amount to a and

occur with probability 1 − pi. The probabilities weighting function of gains is written ϕ+ and

that of losses ϕ−. Both functions are strictly continuous and increasing from the unit interval

into itself and satisfy ϕ+(0) = ϕ−(0) = 0 and ϕ+(1) = ϕ−(1) = 1. The overall value of a bet

on horse i is W (pi, a, Oi) = ϕ+(pi) ∗ u(aOi) + ϕ−(1− pi) ∗ u(−a).

Note that utility is the same for gains and losses. The reason is that a is not observed so I do

not have enough data to identify u in the domain of losses. Hence loss aversion is not modeled

here. Note also that the reference point is the status quo which corresponds to not betting. Two

key aspects of cumulative prospect theory are hence modeled here: reference-dependence and

di�erent probability weighting of gains and losses.

B Obtaining p1 to estimate the parameters of the models

B.1 Expected utility model

In equilibrium, ∀i ∈ 1, ..., N, pi ∗ u(M + aOi) + (1− pi) ∗ u(M − a) = w.

So that:

pi=
w − u(M − a)

u(M + aOi)− (M − a)
(3)

Because

N∑
i=1

pi = 1,

w = u(M − a) +
1∑n

j=1
1

u(M+aOj)−u(M−a)
(4)

Combining equations 3 and 4 solves the model for pi:

pi =
1

u(M + aOi)− u(M − a)
∗ 1∑n

j=1
1

u(M+aOj)−u(M−a)
(5)

Given equation 5 and the shape of u,
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pi =
1

eaθ − e−aθOi
∗ 1∑n

j=1
1

eaθ−e−aθOj

Note that a, which is not observed in the data, cannot be disentangled from θ.

B.2 Rank-dependent utility model

In equilibrium ∀i ∈ 1, ..., N, ϕ(pi) ∗ u(M + aOi) + (1− ϕ(pi)) ∗ u(M − a) = w.

So that:

ϕ(pi)=
w − u(M − a)

u(M + aOi)− (M − a)
(6)

Writing Ψ the reciprocal of ϕ (which exists since ϕ is strictly increasing):

pi = Ψ(
w − u(M − a)

u(M + aOj)− u(M − a)
) (7)

Because

N∑
i=1

pi = 1 :

n∑
j=1

Ψ(
w − u(M − a)

u(M + aOj)− u(M − a)
) = 1 (8)

Solving this equation, which cannot be done analytically, gives w. Replacing w in equation

7 solves the model for pi.

B.3 Cumulative prospect theory

In equilibrium,

∀i ∈ 1, ..., N, ϕ+(pi) ∗ u(aOi) + ϕ−(1− pi)) ∗ u(−a) = w. (9)

Using the fact that

N∑
i=1

pi = 1 and combining it with equation 9 solves the model for pi. It

can not be done in a closed form so p1 is obtained numerically.
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C Details on probability weighting functions by model

C.1 Rank-dependent utility model

C.1.1 Power probability weighting function

The probability weighting function has the shape:

ϕ(p) = pα

where α ≥ 0. If the weighted probability of winning the bet is inferior to the real probability

(α > 1), bettors underestimate the overall value of a bet, they are pessimistic. The expected

utility model is nested within this model for α = 1.

C.1.2 Cicchetti and Dubin probability weighting function

The function introduced by Cicchetti and Dubin (1994) is :

ϕ(p)

1− ϕ(p)
= (

p

1− p
)a1 ∗ (

p0
1− p0

)1−a1

ϕ(p) crosses the diagonal in p0. a1 is positive. If a1 < 1, the function is convex, then

concave. Inversely, if a1 > 1, it is �rst concave, then convex. The closer a1 is to 1, the closer

to the diagonal the function is, which means relatively little sensitivity to small probabilities

changes near the extreme of the probability scale and high sensitivity far o� the extremes of

the probability scale. When a1 = 1, we are back to the expected utility model and p0 is not

identi�ed.

This function is strictly increasing, its inverse is :

Ψ(p) =
( p
(1−p)∗A )1/a1

1 + ( p
(1−p)∗A )1/a1

with A = (
p0

(1− p0)
)1−a1

C.1.3 Lattimore, Baker, Witte probability weighting function

The function proposed by Lattimore, Baker and Witte (1992) is:

ϕ(p) =
δpγ

δpγ + (1− p)γ
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where δ and γ are strictly positive. δ primarily controls the elevation of the function. It

captures the extent of pessimism or optimism. γ primarily controls curvature (i.e., sensitivity

to changes in probabilities). When δ = 1 and γ = 1, we are back to the expected utility model.

This function is strictly increasing, let Ψ be its inverse.

Ψ(p) =
( p
δ(1−p) )

1/γ

1 + ( p
δ(1−p) )

1/γ

C.1.4 Prelec probability weighting function

The probability weighting function proposed by Prelec (1998) is:

ϕ(p) = e−β(− ln p)α

where 0 < α < 1 and β > 0. If β = 1 and α = 1, we are back to expected utility. It nests the

power speci�cation for α = 1. α represents the sensitivity to probabilities: the smaller alpha is,

the more curved the function. β < 1 shows optimism, β > 1 pessimism. β hence controls the

elevation of the function.

This function is strictly increasing, I write its inverse Ψ.

Ψ(p) = exp(−(− ln p

β
)(1/α))

C.1.5 Kahneman and Tversky probability weighting function

The probability weighting function of Kahneman and Tversky (1992) is :

ϕ(p) =
pγ

[pγ + (1− p)γ ]1/γ

If γ = 1, we are back to the expected utility hypothesis.
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C.2 Cumulative prospect theory

C.2.1 Power probability weighting functions

Probability weighting functions have the following shape:

ϕ+(p) = pα, ϕ−(p) = pβ

If α = 1 and β = 1, we are back to the expected utility hypothesis, except that utility

applies to gains and losses rather than to �nal wealth. Since M cancels out in the expected

utility model, it is nested within this model.

C.2.2 Cicchetti and Dubin probability weighting functions

Assuming that the probability weighting functions have the following shapes:

ϕ+(p)

1− ϕ+(p)
= (

p

1− p
)a1 ∗ (

p0
1− p0

)1−a1

ϕ−(p)

1− ϕ−(p)
= (

p

1− p
)a
′
1 ∗ (

p′0
1− p′0

)1−a
′
1

These functions cross the diagonal in p0 and p′0. a1 and a′1 are positive. If a1 = a′1 = 1,

we are back to the expected utility hypothesis. a1 = a′1 and p0 + p′0 = 1 is equivalent to rank-

dependent utility with the Cicchetti and Dubin probability weighting function. The re�ection

case occurs when a1 = a′1 and p0 = p′0.

C.2.3 Lattimore, Baker, Witte probability weighting functions

Assuming that the probability weighting functions have the following shapes:

ϕ+(p) =
δpγ

δpγ + (1− p)γ

ϕ−(p) =
δ′pγ

′

δ′pγ′ + (1− p)γ′
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where δ, γ, δ′ and γ′ are strictly positive. When δ = γ = δ′ = γ′ = 1, we are back to the

expected utility hypothesis. The re�ection case occurs when δ = δ′ and γ = γ′.

C.2.4 Prelec probability weighting functions

Assuming that the probability weighting functions have the following shapes:

ϕ(p) = e−β(− ln p)α

ϕ(p) = e−β
′(− ln p)α

′

where 0 < α < 1, β > 0, 0 < α′ < 1 and β′ > 0. If β = α = β′ = α′ = 1, we are back

to expected utility. It nests the power speci�cation for α = α′ = 1. The re�ection case occurs

when α = α′ and β = β′.

C.2.5 Kahneman and Tversky probability weighting functions

Assuming that the probability weighting functions have the following shapes:

ϕ+(p) =
pγ

[pγ + (1− p)γ ]1/γ

ϕ−(p) =
pγ′

[pγ′ + (1− p)γ′]
1
γ′

γ and γ′ are positive. If γ = γ′ = 1, we are back to the expected utility hypothesis. The

re�ection case occurs when γ = γ′.
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