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Abstract

Non-linear model estimation is generally perceived as impractical and com-

putationally burdensome. This perception limited the diffusion on non-linear

models estimation. In this paper a simple set of techniques going under the

name of Approximate Bayesian Computation (ABC) is proposed. ABC is a

set of Bayesian techniques based on moments matching: moments are ob-

tained simulating the model conditional on draws from the prior distribution.

An accept-reject criterion is applied on the simulations and an approximate

posterior distribution is obtained by the accepted draws. A series of tech-

niques are presented (ABC-regression, ABC-MCMC, ABC-SMC). To assess

their small sample performance, Montecarlo experiments are run on AR(1)

processes and on a RBC model showing that ABC estimators outperform the

Limited Information Method (Kim, 2002), a GMM-style estimator. In the

remainder, the estimation of a new-keynesian model with a zero lower bound

on the interest rate is performed. Non-gaussian moments are exploited in the

estimation procedure.
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1 Introduction

DSGE (Dynamic stochastic general equilibrium) models play an important role

in Macroeconomic theory. In the last decade, they became the workhorse of many

central banks. They are used to explain economic fluctuations from a general equi-

librium perspective, to make forecasts on the path of macroeconomic variables, to

advise policy makers in taking decisions. Model estimation is a crucial step allow-

ing economists to make quantitative statements in the framework of a probabilistic

structure.

Great moderation years have seen the prevalence of linear methods: linearization

to solve the model, Kalman filter to compute the likelihood and Bayesian techniques

to estimate the model. The Great Recession, the presence of a lower bound reached

by the policy interest rate, the general increase in volatility, the need to model a

fraction of borrowing constrained households pushed researchers to inquire about

the role of non-linearities in the economic models. Log-linearization and Kalman

filter are not fit to represent some features of the data (presence of occasionally bind-

ing constraints, stochastic volatility, non-Gaussian shocks) and non-linear solution

methods are being developed. The Particle filter is the method usually applied in

the estimation of non-linear models (Fernandez-Villaverde et al.). The Particle filter

is computationally burdensome, especially to handle medium or large-scale DSGE

models. Besides, the Particle filter needs the introduction measurement errors, to

avoid the degeneracy of the particles and compute the likelihood. In many cases,

given the size of the model, the standard deviation of the measurement errors is

fixed in advance. All these issues limited the diffusion of non-linear estimation so

far.

In this paper, Approximate Bayesian Computation (ABC), a set of techniques

based on simulation and moments matching, is proposed as an alternative to esti-

mate non-linear models. ABC techniques are presented. Two Montecarlo experi-

ments on ABC methods and the Bayesian Limited Information Method (BLI) are

assessed. The goal is comparing the small sample performance of the two estimators.

Moreover, ABC is applied to the estimation of standard new-keynesian model with

an occasional binding positivity constraint on the interest rate.

Approximate Bayesian Computation techniques are a set of techniques developed
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in natural sciences. The core mechanism in ABC (ABC-rejection) is the following:

• The model is simulated a large number of times, conditional on the vectors of

parameters drawn from the prior distribution. Each simulation has the same

sample size of the observed sample;

• Euclidean distance between the moments of each simulation and the observed

ones is computed for each simulation;

• Each simulation is accepted or rejected if the Euclidean distance is below or

above a tolerance level;

• The accepted draws are a sample of the approximate posterior distribution.

Drawing from the prior distribution can be very inefficient if the prior and the

posterior distributions are very different. This causes very low acceptance ratios

and may make simple ABC-rejection impractical.

To tackle the computational inefficiency, a series of refinements have been devel-

oped:

• ABC-regression: the accepted draws are corrected with a post-sampling cor-

rection step;

• ABC-MCMC: the accept-reject is applied to explore the posterior distribution

building a Markov Chain;

• ABC-SMC: the draws are iteratively sampled from the approximate posterior

distribution.

In Economics, the estimator proposed by Creel and Kristensen (2013) in its Bayesian

simulated version (Simulated Bayesian Indirect Likelihood estimator, SBIL) coin-

cides with a variant of ABC (ABC-kernel). Creel and Kristensen provide asymptotic

results for the estimator, compare the small sample performance of the estimator

with the Simulated Method of Moments from a frequentist perspective: they com-

pute the RMSEs with respect to the true values. They also apply the method in

the estimation of a baseline DSGE model, solved with perturbation methods.

Instead, in this paper, the comparison is done between ABC methods and the

Bayesian Limited Information Method (BLI). The BLI is a Bayesian method based

on exploiting the likelihood of the moments. It can be intuitively thought as the

Bayesian version of the Generalized Method of Moments and the Simulated Method

of Moments. In DSGE estimation, it has been applied by Christiano, Trabandt and
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Walentin,(2010), and Christiano, Eichenbaum and Trabandt (2014) and it is getting

more and more popular among researchers.

The comparison of small sample performance is done from a Bayesian perspec-

tive: the RMSEs are computed with respect to the Full likelihood posterior mean

and the approximate posterior distribution are compared to the Full likelihood pos-

terior distributions. The Montecarlo experiments are run using an AR(1) model and

a RBC model with three observables and identification issues. The persistence and

the sample sizes of the models are diverse to check the different performances of the

estimators.

ABC estimators outperform BLI estimator using small samples and high persistence

processes. With large samples, they have the same performance, provided that the

number of simulations is sufficiently large to get rid of the simulation effect. This

hold both for the AR(1) and the RBC model.

BLI and GMM-style estimators exploit the information contained in the mo-

ments. GMM-style estimators build the likelihood function/objective function rely-

ing on the normality assumption of the moments distribution: moments and their

variances are sufficient statistics of asymptotically normally distributed moments.

Instead, ABC estimators explore the whole distribution of the moments. This is

a comparative advantage with respect to the BLI estimator, especially when the

distribution of the moments is far from being normal and not centred around the

population moment. This difference is more remarkable with small samples and

high persistence. In that case, convergence of moments to the normal distribution

is slower and the actual moments distribution substantially differs from the asymp-

totic distribution.

For this same type of reason, ABC can exploit non-Gaussian moments: binomially

and multinomially distributed moment. As an example, in an estimation procedure

of an economic models, ABC techniques can try to match the frequency of recessions

(and expansion), of deflation (and inflation) and so forth.

These results paved the way for a real life application: the estimation of a

newkeynesian model with occasionally binding positivity constraint (models with

Zero Lower Bound, ZLB). Models with occasionally binding constraints produce

moments which do not respect the regularity assumption requested to apply GMM-

style estimators. ABC can estimate such models, since the moments distribution

is explored through the accept-reject method, taking into account the actual distri-

bution of the moments. Moreover, ABC permits to match non-gaussian moments:

the probability of being at the ZLB, the number of episodes and so forth. Th non-

linearity generated by the occasionally binding constraint and the gap between the
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notional interest rate and the zero lower bound is handled by fully non-linear meth-

ods or piecewise linear methods. Perturbation methods (log-linearization, 2nd order

approximation and so forth) cannot handle the solution of a model with occasion-

ally binding constraint, since they approximate the solution around a steady state

in which the zero lower bound is not binding.

In this paper, a piecewise linear approximation method is applied to the solu-

tion of a model with ZLB. The model is estimated according to an ABC-Sequential

Montecarlo technique. ABC-SMC is helpful to tackle the curse of dimensionality

increasing the acceptance ratio. The estimates are exploited to produce some con-

sideration abut the role of the ZLB in the economy.

Summing up, the contributions of this work are the following. ABC techniques

are explored and applied to the estimation of economic models. Moreover, a compar-

ison with the Bayesian Limited Information is assessed from a Bayesian perspective:

ABC estimators outperform GMM-style estimators in terms of RMSE (computed

with respect to the Full likelihood estimator). This is particularly true dealing with

small samples and highly persistent processes. Besides, the estimation of a model

with a Zero Lower Bound is performed, using gaussian and non-gaussian moments.

The estimation is performed using six observable variables and a dataset including

2013Q31.

The reminder of the paper is the following. Section 2 presents the ABC tech-

niques. In Section 3 a comparison between ABC estimator and the BLI estimator

is assessed. In Section 4 the model with ZLB is estimated. Section 5 concludes.

2 Approximate Bayesian Computation.

The Approximate Bayesian Computation (ABC) is a set of statistical techniques

developed in population genetics at the end of the 90’s (Pritchard, 2000). In the last

decade, the methodology spread across all natural sciences, namely epidomiology,

ecology and biology. ABC is based on moments matching: the moments of the model

are matched with the ones observed from the data. Moments are simulated according

to the observed sample size and inference is based on the Euclidean distance between

the simulated moments and the observed ones.

The use of moments of ABC-techniques makes the methodology similar to the

GMM-syile estimators: the Generalized Method of Moments (GMM, Hansen 1982)

and its simulated version (the Simulated Method of Moments, SMM). In Section

3, a comparison between the ABC and a bayesian version of a GMM estimator

1Gust et al. estimate a similar model using only three observables
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(Kim,2002) is assessed. As it will become clear ABC estimators present a series

of advantages with respect to the GMM-style estimators. ABC are particularly fit

in the estimation of models whose likelihood computation is troublesome or whose

moments distribution prevents the use of GMM-style estimators (irregular moments

distribution, non-gaussian moments, short samples).

ABC methods have a Bayesian structure: the moments matching procedure

updates a prior distribution to deliver an approximate posterior distribution. Ap-

proximation is a result of using the moments rather than computing the likelihood

function of the model. The pseudo-algorithm by Pritchard (2000) clarifies the mech-

anism at the core of ABC methods and goes under the name of ABC-rejection:

• Draw θi from the prior distribution p(θ)

• Simulate the model and get the variable yi

• Compute the summary statistics si

• If the Euclidean distance ρ||si − s|| < ϵ accept θi otherwise reject it

• Repeat the procedure for N times

where si is the vector of moments from the simulated sample, s is the vector of

moments of the observed data, ϵ is the tolerance level.

In other words, in ABC-rejection the model is simulated a number of times con-

ditional on parameters drawn from the prior distribution. Moments from these

simulations are computed and matched against the observed moments. For each

simulation the Euclidean distance is computed. If the euclidean distance is smaller

than a fixed threshold, the simulation is accepted. The parameters of the accepted

simulations are a sample from the approximate posterior distribution.

The Bayes Rule of the Bayesian statistics is approximated:

P (θ|y) ∝ L(y|θ)P (θ) → P (||si − s|| < ϵ)P (θ) (1)

The likelihood function is approximated by the accept-reject step on the euclidean

distances criterion. If the moments used in the estimation are sufficient statistics

of the model, for ϵ → 0 and N → ∞ the sequence of θ’s accepted converges to

the posterior distribution. A large number of simulations needs to be run to reduce

the error introduced by the simulation step. When the number of parameters to

infer increases, so does the number of moments to use. The probability that the

Euclidean distance is below the threshold is smaller and and a larger number of

simulations are run to obtain N accepted draws.
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This brings to high inefficiency (the acceptance ratio gets small) and this may

make simple ABC impractical (curse of dimensionality). A series of more sophisti-

cated method has been developed to tackle the curse of dimensionality. Accepted

simulations can be assigned a weight according to a kernel weighting function. The

argument of the kernel is the euclidean distance: the smaller the distance, the larger

the weight. In this paper, this method is called ABC-kernel and coincides with the

simulated Bayesian version of the estimator proposed by Creel and Kristensen, 2012.

In order of time, the ABC-rejection is the first method developed and is at the core

of the other more sophisticated methods. ABC methods are mainly divided in three

big subsets:

• ABC-regression;

• ABC-MCMC;

• ABC-SMC.

The three groups adopt different strategies to tackle the curse of dimensionality

and the low efficiency of Pritchard algorithm. In particular the first solution runs a

post-sampling correction on the accepted parameters, the last two draw parameters

more efficiently.

2.1 ABC with local linear regression

ABC-rejection is affected by the curse of dimensionality: to estimate a large

set of parameters, we need to increase the number of summary statistics in the

Euclidean distance computation. The probability of the simulated parameters to

be accepted decreases and a higher number of simulations have to performed. This

may have a huge impact on the feasibility of the estimation procedure. Besides,

to increase the tolerance level can strongly compromise the approximation of the

posterior distribution due to a larger simulation error. ABC-regression increases the

efficiency of ABC through a post-sampling correction.

Three main refinements are introduced after the accept-reject step:

• The moments are rescaled by their median absolute deviation: this transforms

the previous rectangular acceptance region in a sphere.

• Each accepted simulation is assigned a weight according to its euclidean dis-

tance: the smaller the distance ρi, the larger the weight Wi. An Epanechnicov

weighting function is generally used, but the algorithm is compatible with

other kinds of kernel (normal, triangular and so forth). 2.

2This correction coincides with the Indirect Likelihood Inference by Creel and Kristensen (2013)
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• The accepted parameters are corrected exploiting the result of a regression

run after the accept-reject (hence the name ABC-regression). Each parameter

is updated according to the result of a local linear regression of the accepted

parameters on the discrepancies between simulated moments and observed

ones (Beaumont et al. (2002)).

In ABC regression (Beumont,2002), ABC is equivalent to a problem of con-

ditional density estimation, where a joint density distribution P (si, θi) is updated

through an accept-reject algorithm:

P (θ|s) = p(si, θ)

I {ρ|si − s| < ϵ}
(2)

For this reason, conditional density estimation techniques (Fan an Gijbels, 1992)

estimation are borrowed and incorporated in the ABC algorithms.

The ABC-regression pseudo-algorithm is:

• Draw θi from the prior P (θ);

• Simulate the model and obtain the observable variables yi;

• Compute the simulated moments si and the absolute standard deviation; for

each moment kj;

• Compute the Euclidean distance for each simulation;

ρ|si, s| =

√√√√ s∑
j=1

(si/kj − s/kj)2 (3)

• Select the tolerance level such that a fraction of the simulated parameters is

accepted Pϵ = N/M ;

• Each accepted draw is assigned a weight according to the Epanechnikov kernel:

Kϵ(ρi) =

ϵ−1(1− (ρi
ϵ
)2) ρi ≤ ϵ

0, ρi > ϵ

;

• Apply a local linear regression to the linear model:

θi = α+ (si − s)′β + ϵi, (4)
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for i = 1, ..., N .

• Adjust the parameter given the results of the local linear regression:

θ∗ = θ − (si − s)′β̂, (5)

which is equivalent to compute: θ∗i = α̂ + ϵ̂i

The adjusted parameters associated to their kernel weights are random draws of the

approximate posterior distribution.

The initial part of the ABC-regression is the simple ABC rejection. The accepted

parameters are corrected given two assumptions on the relation between the param-

eters drawn and the summary statistics simulated:

• Local linearity: a local linear relationship between the discrepancies of the

moments and the parameters holds in the vicinity of the observed moment s

such that the parameters can be expressed by the following equation:

θi = α+ (si − s)′β + ϵi; (6)

• Errors ϵi’s have zero mean, are uncorrelated and homoskedastic.

In general, linearity only in the vicinity of s is a more palatable assumption than

global linearity. In the local linear regression to estimate the coefficients for α and

β, the minimized object is:

m∑
i=1

{
θi − α− (si − s)Tβ

}2
Kδ(||si − s||) (7)

In ABC literature, Epanechnikov kernel function is the one more common but others

are feasible. In Eq.(7), the only difference with respect to the standard OLS is

that the squared errors are weighted according to the distance ρi associated to the

parameter θi. The solution is given by:

(α̂, β̂) = (XWX)′(XWθ) (8)

Where X = (si − s) for i = 1, ..., N and W is a diagonal matrix, where each non

zero element is Kδ(||si − s||).
The estimates for α and β are used in the adjustment step, through the adjustment

equation 5.

In conditional density estimation terms: E[θ|si = s] = α.
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The posterior mean coincides with the Nadaraya-Watson estimator (Nadaraya, 1964,

Watson, 1964), as suggested by Blum and Francois (2010) :

α =

∑
i θ

∗
iKδ(||(si − s||)∑

iKδ||(si − s)||)
(9)

Blum and Francois (2010) add further step: a correction for heteroskedasticity in

the adjustment step with non-linear regression in lieu of the local linear regression.

For the sake of simplicity, here the local linearity assumption is maintained allowing

the variance of the errors to change with the moments (Beaumont, 2010). The

heteroskedastic is:

θi = α + (si − s)′β + ϵi = α + (si − s)′β + σi ∗ ξi, (10)

where σ2
i is the variance of the error conditional on observing the simulated moments

V ar[θ|si] and ξi ∼ N(0, 1).

In this new procedure (ABC-regression with correction for heteroskedasticity) esti-

mates α and β remain the same while in a further step the conditional variance for

each draw is estimated. Finally, the correction mechanism is applied.

Blum and Francois model the conditional variance on the moments discrepancy by

a second local linear model, borrowing from Fan and Yao (1998). A second local

linear regression is run and the conditional variance for each draw σi is estimated :

log(ϵi)
2 = τ + (si − s)′π + υi, (11)

where υi is iid with mean zero and common variance.

In this second local linear regression, the following object is minimized:

min
{
log(ϵ̂i)

2 − (si − s)′π
}
Kδ(||si − s||) (12)

where ϵ̂i’s are the heteroskedastic errors estimated in the first regression.

The variance conditional on the observed moments is σ2 = V ar[θ|s] is obtained

according to

σ̂ = τ̂ (13)

while the the variance conditional on each simulated moments is

σ̂i = τ̂ + (si − s)′π̂ (14)
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Values obtained in 14 are used in the new post-sampling correction equation 15

where the magnitude of each heteroskedastic error ϵi is corrected by the estimated

standard deviation σ̂i:

θ∗ = α̂ +
σ̂

σ̂i
ϵ̂i (15)

When the associated variance is higher than the variance conditional on the observed

moments, the ratio σ̂
σ̂i

is lower than 1 and the magnitude of the correction will be

decreased with respect to the estimated ϵ̂i.

ABC-regression allows to increase the tolerance level (i.e. increase the frac-

tion of accepted simulations), making the algorithm computationally more efficient.

Nonetheless, when the dimensionality of the parameters increases, the algorithm can

deliver unstable results. Besides, some problems in the adjustment step can arise

when the local linearity assumption does not hold: when the observed moments lie

at the boundary of the simulated moments, adjusted values can be updated out-

side the support of the prior distribution (extrapolating rather than interpolating).

Some refinements have been found by the literature to fix this problem, but a general

consensus has not been reached.

Before adopting ABC-regression, drawing scatter plots can be useful to assess the

informativeness of the moments regard the parameters to infer. In particular, (local)

linear relations between moments and parameters can be found. When the dimen-

sionality of the problem makes both ABC-rejection and ABC-regression impractical,

the ABC-SMC is the technique more fit to tackle the curse of dimensionality, as it

will be shown in the final Section.

2.2 ABC-MCMC

ABC-MCMC methods draw parameters from a distribution closer to the poste-

rior. This increases the acceptance rate of the algorithm. The algorithm developed

by Marjoram et al. (2003) is the following:

• For t = 0, Draw θ ∼ π(θ);

• For t ≥ 1 draw from:

θ
′ ∼ K(θ|θt−1); (16)

• Simulate and produce the moments conditional on θt;

• If ρ(S(x), S(y)) < ϵ

– Draw u ∼ U(0, 1),
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– If

u ≤ π(θ′)

π(θ)t−1

K(θt−1|θ′
)

K(θ′|θt−1)
(17)

then, θt = θ
′
; otherwise θt = θt−1

otherwise θt = θt−1

The MCMC produced by the algorithm is an approximation of the posterior distri-

bution. Problems associated with ABC-MCMC are mainly related to presence of

multimodality and mixing problems.

2.3 ABC-Sequential Montecarlo

ABC-SMC nests ABC into the structure of a SMC technique: the initial particles

are drawn from a proposal distribution. Each particle is a vector of parameters.

The distribution is iteratively updated to converge to the target distribution. At

each step particles are perturbed according to a Kernel function. Each particle

is accepted or rejected according to the Euclidean distance, choosing a decreasing

tolerance level such that ϵt ≤ ϵt−1. If accepted, the particle is assigned a weight

taking into account the Kernel function. A resampling procedure is envisaged to

avoid sample degeneracy (i.e. few particles ending up hoarding much of the weight).

The algorithm is the following:

1. Initialize the tolerance level sequence: ϵ1, ϵ2, ϵ3...ϵT and select a sampling dis-

tribution µi. Set the iteration indicator t = 1.

2. Set the particle indicator i = 1 and:

• If t = 1, draw the swarm of particles {θ1θ2...θN} from the importance

distribution µ1.

• If t > 1, sample the new swarm
{
θ∗∗i,t−1

}
i = 1N with weights

{
W ∗∗

i,t−1

}N
i=1

ad perturb each particle according to a transition kernel θ∗∗ ∼ Kt(θ|θ∗)

3. Simulate the model to obtain x∗∗ conditional on each particle : if ρ(S(x∗∗, S(x0)) <

ϵt accept the particle, otherwise reject.

4. If accepted, assign the particle a weight:

• If t = 1, Wi,1 =
π(θi,1)

µ1(θi,1)
.

• If t > 1,

Wi,t =
π(θi,t)∑N

j=1Wt−1(θt−1,j)Kt(θt,i|θt−1,j)
(18)
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where π(θ) is the prior distribution for θ.

5. Normalize the weights such that
∑N

i=1Wt,i = 1.

6. Compute the Effective Sample Size (ESS):

ESS =

[
N∑
i=1

(Wt,i)
2)

]−1

(19)

If the ESS is below N 1
2
, resample with replacement the particles according

to the weights {Wi,t}Ni=1 and obtain the new population with new weights

Wt,i =
1
N
.

7. If t < T , return to (2).

This method does not get stuck in low probability areas or is able t explore the whole

support also in case of multimodality. It eases the inefficiency in case of significant

mismatch between prior and posterior. All these reasons make it particularly fit for

the estimation of non-linear DSGE models.

3 A comparison with the Bayesian Limited Infor-

mation Method

In this section the performance of the ABC estimators is compared with an

increasingly popular alternative: the Limited Information Method (Kim, 2002). Its

Bayesian version (the Bayesian Limited Information Method, henceforth BLI) is

often interpreted as the Bayesian counterpart of the GMM-style estimators. The

BLI is obtained by applying a Bayes Rule where the Prior distribution contains the

extra data information and the likelihood is the joint probability of the moments,

rather than of the data. Since the Central Limit Theorem applies, the likelihood is

obtained relying on the asymptotic normal distribution of the moments (i.e. on the

Central Limit Theorem).

Given the vector of parameters θ, the sample moments γ̂ and the estimated

variance of the moments V̂ , The Approximate Posterior distribution P (θ|γ̂, V̂ ) is

obtained according to the Bayesian updating rule:

P (θ|γ̂, V̂ ) =
P (γ̂|θ̂, V )P (θ)

P (γ̂|V )
(20)
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where T is the number of moments,γ̂ is the vector of sample moments, γ(θ) is

the vector of analytical moments depending on the parameter θ, P (θ) is the prior

distribution. The likelihood P (γ|θ̂, V̂ ), conditional on V̂ , is computed according to:

P (γ|θ̂, V̂ ) =
1

(2π)(
N
2
)
|V̂ |−

1
2 exp

{
−T
2
(γ̂ − γ(θ))′ V −1 (γ̂ − γ(θ)) .

}
. (21)

The role of moments and the Bayesian structure make the BLI the direct competitor

of ABC estimators to check the small samples properties of the ABC estimator

in a Bayesian framework. Interestingly, BLI can be interpreted as the Bayesian

counterpart of the GMM and SMM estimators.

The relative performance of the ABC estimator with respect to the BLI method

is measured in two Montecarlo exercises. The goal is to understand how much the

presence of small samples and large persistence across the time series affect two

estimators. The criteria for the comparison are twofold:

• the Root Mean Square Error (RMSE) with respect to the Full likelihood Pos-

terior Mean;

• The Overlapping Ratio between the 90% Credible Intervals of the Approx-

imate Posterior distributions and the Full Likelihood Posterior Distribution

(our target distribution).

These two criteria analyse the estimators from a Bayesian perspective. RMSE mea-

sures how close are the two estimators to the Full likelihood Bayesian estimator (the

Posterior Mean). The Overlapping Ratio captures which of the two methods deliver

a better approximation of the posterior distributions. The RMSE is obtained by:

RMSE =
1

N

∑(
θ̂app − θ̂full

)2
θ

, (22)

where θ̂app is the mean of the posterior of one of the two approximating methods,

θ̂full is the full likelihood posterior mean.

The Overlapping Ratio is obtained by:

OR =
CI90%,App ∩ CI90%,F l

CI90%,App ∪ CI90%,F l

(23)

where CIi−%,App is the i− th Percentile of the Approximate Posterior distribution,

∩ stands for Intersection and ∪ for Union. The Overlapping Ratio is always in-

cluded in the interval [−1, 1]. For example if the two intervals perfectly coincide
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the Overlapping Ratio equals 1, whereas if two degenerate posterior distributions

do not overlap at all, the Overlapping Ratio equals -1.

The BLI estimator relies on the usual regularity assumptions of the GMM-style

estimators. The normality assumption allows the GMM-style estimators to compute

the likelihood of the moments focusing just on the first and the second moments

of the moments distributions, and compute the quadratic objective function to up-

date the prior. With ABC methodology, the moments distribution is studied by

simulating the model, according to the observed sample size. The departure from

the normality assumption and the kernel exploration of distribution delivers more

reliable estimators than the GMM style estimators when dealing with small samples

and highly persistent cases.

This result has been partially pointed out by Creel and Kristensen (2012) in their

Indirect Likelihood Inference with which ABC shares the same intuition and similar

asymptotic results. In a first step, the experiment is run on simple AR(1) model.

In the remainder of this section focus is on a RBC model subject to some weak

identification issues.

3.1 Case 1: AR(1)

Despite its simple structure, the AR(1) process reproduce different estimation is-

sues. Moreover, most exogenous processes generating stochasticity in DSGE models

are AR(1) processes exhibiting different kind of persistence (from low persistence

processes to Unit Roots). The AR(1) model is estimated by varying the sample

size and the persistence of the process, in order to check if and when an estimator

exploring the simulated distribution of the moments (ABC) outperforms one relying

on the normality assumptions and focusing on the GMM-style quadratic objective

function (BLI).

The estimation for each AR(1) process is run 1000 times. The sample sizes

are 100, 300, 1000 observations. The autocorrelation factor tuning the persistence

can assume the following values ϕ = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99].

Increasing the persistence of the process and decreasing the sample size should favour

ABC estimators both in terms of RMSE and Overlapping Ratios. Vice versa, the gap

between the RMSEs and the ORs of the two estimators is expected to close increasing

the sample size and lowering the persistence. The moment in the matching procedure

is the first order autocovariance. The Prior distribution is a Uniform prior ∼ U [0, 1].

For the ABC, AR(1) is simulated 10000 times, the Euclidean distances between the

observed autocovariance and the simulated ones are computed and sorted out to
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select the first percentile of the distribution. The curse of dimensionality does not

affect the estimation: 10000 simulations are enough to get rid of the error induced by

the simulations since the moment is a scalar. For this reason, the correction step of

the ABC-regression and the Kernel Weighting do not improve the estimation results

upon the ABC-rejection procedure. Only results for ABC-regression are reported

for sake of brevity.

For the Bayesian Limited Information method, the likelihood of the autocovari-

ance is computed and the prior updated. The posterior distribution is studied with

the Importance Sampling algorithm: as importance distribution the prior distri-

bution is used and 10000 samples are drawn for each estimation. The estimated

variance V̂ to condition the likelihood (and the posterior distribution)is computed

with two alternatives: the HAC Variance Covariance Estimator or a bootstrapping

procedure. In the first case, the Newey-West estimator is computed, using a Bartlett

Kernel and the bandwidth equal to B(T ) = floor(4 ∗ (T/100)(2/9)), where T is the

sample size.

An alternative method is inspired to the solution proposed in Christiano, Trebandt

ad Walentin, where the covariance matrix is estimated through a bootstrap step. In

the latter case, a first step estimator is computed to minimize a quadratic objective

function using the identity matrix as variance covariance matrix. Afterwards, the

AR(1) process is simulated for 1000 times (bootstrapping) to compute the auto-

correlation for each bootstrap and the covariance of the moments V̂ to compute

the likelihood. Since working with one moment, the identity matrix at the initial

step is simply the unity scalar and the covariance matrix is the covariance of the

autocovariances computed in the bootstrap step.

Before exposing the results of the experiment, it can be interesting to give a

quick look to the distribution of the autocovariances obtained by simulating the

AR(1) process using different autocorrelations (from low persietency up to almost

unit roots). In Fig. 1, the distribution of the sample autocovariances when ϕ = 0.5

is reported. The sample size varies from 50 to 1000 observations. The distribution

of the autocovariances converge quickly to a Normal distribution with the mean of

the population autocovariance (γ = ϕ/(1− ϕ2)), represented by the pink plane. In

the the highly persistent case (Fig.2) when ϕ = 0.99, the convergence to the normal

distribution is much slower and even with a sample size of 5000 observations, the

distribution of the autocovariance is skewed and not centred around the popula-

tion autocovariance. These results render a simple intuition on the expected (and

found) results in the Montecarlo experiments. Fig. 3, Fig. 4,and Fig. 5 show the

evolution of the RMSEs with respect to the Full likelihood posterior mean varying
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the persistence from ϕ = 0.1 up to ϕ = 0.99. The three figures are generated using

different sample size: respectively 100, 300 and 1000 observations. Comparing the

three figures, the gap between the two methods is larger in favour of ABC in small

samples and reduces increasing the sample size. Moreover, for each sample size,

increasing the persistence widens the gap in favour of ABC. Among the different

approaches to estimate the variance covariance matrix of the moments V̂ , the HAC

Newey-West estimator ensures smaller RMSEs especially in highly persistent cases

and small samples, while the bootstrapping methods has smaller RMSE with low

autocorrelations. In large samples, the RMSEs converge, at least up to ϕ = 0.95.

These results were widely expected in the light of the distributions juxtaposed in

Figs. 1,2. Figs. 6 7 and 8 show instead the evolution of the Overlapping Ratios

passing from low autocorrelations to almost unit roots.

Again, the samples are made of 100, 300 and 1000 observations. Our intuition

is confirmed by the results: the OR gap between ABC methods and BLI is larger

in general for highly persistent processes proving that ABC outperforms BLI in

approximating the posterior distributions under certain conditions: the smaller the

sample size, the larger the gap between the methods in favour of ABC. Also from this

standpoint, results suggest that among the BLI estimators, the HAC estimation of

the variance covariance matrix has a larger OR values than the Bootstrapping Pro-

cedure for persistent processes, while the opposite is true for the low persistent cases.

3.2 Case 2: A RBC with identification issues

In this second section, the performance of the two estimators is studied in a more

complex and real world application. The experiment is run on a linear RBC model

with three structural shocks and three observables. Again the comparison is run from

a Bayesian perspective, taking the Full likelihood posterior distribution as reference

and trying to capture to which extent the two approximate posterior distributions

approximate the results of the true full likelihood posterior distributions.

The RBC estimated by Creel and Kristensen (2012) is a plain-vanilla RBC model

with no problems of identification, given the simple structure of the model with just

one structural shock on productivity. The RBC studied in this section encounters

some identification issues concerning the preference parameters, due to the presence

of three stochastic processes: a productivity shock on the production function, a

shock on the preference affecting the labour supply and a shock on the interest rate

requested by the household. The presence of these three shocks permit to estimate

the full likelihood distribution using three observable variables without the need for
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measurement errors.

The households maximize the following expected sum of the utility functions:

maxEt

(
∞∑
t=0

βt

(
lnCt −Bt

H
1+ 1

ν
t

1 + 1
ν

))
(24)

subject to the budget constraint:

Ct + It = WtHT +DtRtKt. (25)

Et stands for the expectation operator, Ct is the consumption, Ht are the hours

offered by each household, Bt is the shock to the preference (namely the labour

supply) (Rios-Rull et al., 2012) and Dt is the shock to the interest rate requested by

the household like in Smets and Wouters (2007). β is the subjective discount factor

and ν is the Frisch elasticity. Capital Kt is cumulated according to the following

rule:

Kt+1 = (1− δ)Kt + It (26)

where δ is the depreciation rate and It is the investment. Firms choose how much

capital and hours to employ in the production function given the technology At:

Yt = AtK
α
t H

1−α
t (27)

The market clearing is defined by:

Yt = Ct + It (28)

The economy is subject to the following three structural shocks:

log(At+1) = ρalog(At) + σaϵa (29)

log(Bt+1) = ρblog(Bt) + σbϵb (30)

log(Dt+1) = ρdlog(Dt) + σdϵd (31)

The technology shock At is the standard shock of the RBC literature (Kydland and

Prescott,1983). The shock on the preferences Bt perturbs the labour supply hitting

the marginal rate of substitution between consumption and leisure (see Rios-Rull,

2012). The shock on Dt is a shock on the interest rate requested by the households

and can be interpreted as a shock to the risk premium.(Smets and Wouters, 2007).
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The model equilibrium is obtained by the following equations:

Ht =

(
1

Bt

Wt

Ct

)γ

(32)

1

Ct

= β

(
1

Ct+1

((1− δ) +Dt+1Rt+1)

)
(33)

Yt = Ct + It (34)

Kt+1 = Kt(1− δ) + It (35)

Rt = αAtK
α−1
t H1−α

t (36)

W = (1− α)AtK
α
t H

−α
t (37)

Yt = AtK
α
t H

1−α
t (38)

Eq. 32 is the intratemporal choice between consumption and leisure, Eq. 33 is the

Euler Equation. Eqs. 34 and 35 are the resource constraints and market clearing

conditions completing the equilibrium of the model. Eq. 35 is the law of motion of

capital and Eq.s 36, 37, 38 are the exogenous processes.

The experiment adopts an informative prior distribution of the same fashion that

Rios-Rull et al.(2012) use to estimate a state-of-the-art Real Business Cycle. Infor-

mativeness in the prior distribution eases the identification issues associated to the

preferences parameters.

Each Montecarlo experiment is made of 100 repetitions. The RMSE and the

Overlapping Ratio are computed using different sample sizes: 100, 200, 500 ob-

servations. The data generating parameters are the following: β = 0.95, γ = 2,

ρa = 0.95, ρb = 0.95, ρd = 0.95, σa = 0.01 σb = 0.01, σd = 0.01. The persistence

of the processes plays in favour of of the ABC-estimators, especially in light of the

results previously obtained in the AR(1) case. The moments are the covariances

and the first order autocovariances of three observables: income Yt, hours Ht and

investments It.

The prior distribution is indicated in Table 1. Concerning the ABC methods,

RBC is simulated 5000 times, the tolerance level is such that the acceptance ra-

tio of the simulations is equal to 5%. The results of ABC-rejection, ABc-kernel,

ABC-regression and ABC-regression+HC, ABC-OLS (ABC-regression where the

regression is simply linear) are reported.

The variance covariance matrix of the BLI estimator is obtained through the HAC

Newey-West estimator. For each Full likelihood and BLI estimation, a MCMC is

drawn following the steps listed in An and Shorfheide (2007). Each chain contains
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10000 draws with a burn-in period of 1000 draws. Table 2 contains the results of the

RMSE for the case of 100 observations, informative prior and high persistence of the

process. ABC RMSEs are smaller than the BLI RMSEs. Tables 3 and 4 report the

RMSEs respectively for 200 and 500 observations. The gap between the estimators

is still in favour of the ABC.

Overlapping Ratios of the 90% credible intervals of the approximate posterior

distributions and the Full likelihood posterior distribution are compared. The re-

sults are respectively reported in Tables 5,6,7. ABC outperforms BLI method in

approximating the full likelihood posterior distribution under the three different

sample sizes: 100, 200 and 500 observations.

4 An application to the Zero Lower Bound

The financial crisis of 2008, the Great Recession and the years of slow growth rep-

resent a big challenge to DSGE modelling and their estimation. Since the beginning

of the crisis and with different timings, many central banks lowered interest rates

at their minimum and maintained them there for more than 5 years. In 2014Q4,

interest rates in U.S, Euro Area, U.K., Sweden and other economic areas are still

at the zero lower bound. From a model perspective, the binding constraint on the

policy rate and the gap between the Taylor rule implied interest rate and the actual

one cause a non-linearity to take into account in the model solution.

In this section, ABC-SMC is applied on the estimation of a newkeynesian model

with an occasional binding constraint on the zero lower bound. The non-linear

model is borrowed by Fernandez-Villaverde et al. (2012). The notation is the same

for the sake of comparison between the calibrated values of the original papers and

the estimates of this section. As it appears clear from Section 3, ABC techniques

study the simulated distribution of the moments without relying on the normality

and regularity assumptions made in the GMM-style estimators. Moreover, in ABC

non gaussian moments can be exploited (i.e. binomial, multinomial etc.) Here, the

following moments are used in the estimation together with the usual covariances:

• Frequency of the zero lower bound, number of episodes at the zero lower bound

in the sample;

• Frequency of recession events, number of recession episodes;

• Frequency of deflation events, number of deflation episodes.
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In this paper the model is solved according to the Piecewise linear solution, using

the MATLAB routine provided by Guerrieri and Iacoviello (2014). The piecewise

linear solution is quick to obtain with respect to the other non-linear methods and

can handle medium-size DSGE models. This allows to obtain a large numbers of

simulations in short range of time. The sample includes six observable variables and

includes observations up to 2014Q3. The main exercise uses data starting for the

beginning of the Great Moderation (1983Q1). Hence in the sample, the ZLB binds

for more than one fifth of the sample. This, together with the use of non-conventional

features of the data (frequency of the ZLB and so forth), tries to capture the effects

of the exit from the Great Moderation in the estimate results.

4.1 The model

The model is a standard newkeynesian model with occasionally positivity con-

straint on the interest rate. A household maximizes her utility consuming and

providing labour (the unique productive factor) to intermediate firms operating in

monopolistic competition, readjusting prices according to Calvo type of contracts.

The differentiated products are then assembled by retail firms operating in perfect

competition.

Households maximise the following utility function separable in consumption ct

and labour lt.
∞∑
i=0

(
t∏

i=0

βi

){
logct − ψ

l1+ϕ
t

1 + ϕ

}
(39)

where ϕ is the inverse of the Frisch labour supply elasticity and βt is the subjective

discount factor subject to stochastic fluctuations around the mean β:

βt+1 = β1−ρbβρb
t exp(σbϵb,t+1) (40)

with ϵb,t+1 ∼ N(0, 1). ρb and σb are respectively the autocorrelation and the standard

deviation of the AR(1) process. The household maximizes her utility subject to the

budget constraint:

ct +
bt+1

pt
= wtlt +Rt−1bt/pt + Tt + Ft (41)

where bt is a nominal government bond that pays a nominal interest rate Rt. pt is

the price level, whereas Tt and Ft are respectively the lamp sum taxes and the profits

of the firms. Retail firms reassemble intermediate goods yit and the technology:

yt =

(∫ 1

0

y
ϵ−1
ϵ

it di

) ϵ
ϵ−1

(42)
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with ϵ is the elasticity of substitution. Final producers maximize their profit taking

into account intermediate goods prices pit, final prices pt. The demand for each good

will follow:

yit =

(
pit
pt

)−ϵ

yt, (43)

and the price of the final good will be equal to:

pt =

(∫ 1

0

p1−ϵ
it di

) 1
1−ϵ

. (44)

The wholesale firms operate according to the production function:

yit = Atlit, (45)

where the productivity At evolves according to the law of motion:

At = A1−ρAAρA
t−1exp(σAεA,t) (46)

with εt ∼ N(0, 1). The marginal costs are mct =
wt

At
.

The firms choose their price according to a Calvo rule, where each period just a

fraction 1− θ firms can re-optimize their prices pit. Firms will choose their price to

maximize the profits:

max
pit

Et

∞∑
τ=0

θτ

(
τ∏

i=0

βt+1

)
λt+1

λt

(
pit
pt+τ

−mct+τ

)
yit+τ (47)

s.t.

yit =

(
pit
pt

)−ϵ

yt (48)

where λt+s is the Lagrangian multiplier for the household in period t + s. Two

auxiliary x1,t and x2,t are used to define the solution to the maximization problem:

ϵx1,t = (1− ϵx2,t) (49)

x1,t =
1

ct
mctyt + θEtβt+1Π

ϵ
t+1x1,t+1 (50)

x2,t =
1

ct
Π∗

tyt + θEtβt+1Π
ϵ−1
t+1

Π∗
t

Π∗
t+1

x2,t+1 = Π∗
t

(
1

ct
yt + θEtβt+1

Πϵ−1
t+1

Π∗
t+1

x2,t+1

)
(51)

where Π∗
t =

p∗t
pt
. Inflation dispersion will be equal to:

1 = θΠϵ−1
t + (1− θ)(Π∗

t )
1−ϵ. (52)
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The government sets the nominal interest rate:

Rt = max [Rt, 1] , (53)

with the notional interest rate Zt:

Zt = R1−ρrRρr
t−1

[(
Πt

Π

)ϕπ
(

yt
yt−1

)

)ϕy
]1−ρr

mt (54)

with mt being the monetary policy iid shock mt = exp(εm,tσm), ϵm,t ∼ N(0, 1). The

gross interest rate is equal to the notional interest rate as long it is larger than 1,

since it cannot be set below 1 (the zero lower bound, ZLB).

The government sets also the spending:

gt = sg,tyt (55)

sg,t = s1−ρg
g s

ρg
g,t−1exp(σgεg,t) (56)

with ε ∼ N(0, 1). Since the agents are ricardian, we can set bt = 0.

After aggregation we obtain:

yt =
At

vt
lt (57)

with vt is the loss of efficiency introduced by the price dispersion:

vt =

∫ 1

0

(
pi,t
pt

)−ϵ

di (58)

Moreover, following the Calvo pricing properties we can write:

vt = θΠϵ
tvt−1 + (1− θ)(Π∗

t )
−ϵ. (59)

4.2 The Equilibrium

The Equilibrium is given by the sequence

{yt, ct, lt,mct, x1,t, x2,t, wt,Πt,Π
∗
t , vt, Rt, Zt, βt, At,mt, gt, bt, sg,t}∞t=0 (60)

. The equilibrium is defined by the following equations.

The intertemporal and the intratemporal household F.O.Cs:

1

ct
= Et

{
βt+1

ct+1

Rt

Πt+1

}
, (61)
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ψlϕt ct = wt (62)

The solution of the maximization problem of the firms:

mct =
wt

At

, (63)

ϵx1,t = (1− ϵx2,t), (64)

x1,t =
1

ct
mctyt + θEtβt+1Π

ϵ
t+1x1,t+1, (65)

x2,t =
1

ct
Π∗

tyt + θEtβt+1Π
ϵ−1
t+1

Π∗
t

Π∗
t+1

x2,t+1 = Π∗
t

(
1

ct
yt + θEtβt+1

Πϵ−1
t+1

Π∗
t+1

x2,t+1

)
. (66)

The government equations are:

Rt = max [Rt, 1] , (67)

Zt = R1−ρrRρr
t−1

[(
Πt

Π

)ϕπ
(

yt
yt−1

)

)ϕy
]1−ρr

mt. (68)

Inflation evolution and price dispersion:

1 = θΠϵ−1
t + (1− θ)(Π∗

t )
1−ϵ, (69)

vt = θΠϵ
tvt−1 + (1− θ)(Π∗

t )
−ϵ. (70)

Market clearing conditions:

yt = ct + gt, (71)

yt =
At

vt
lt. (72)

The stochastic processes are:

βt+1 = β1−ρbβρb
t exp(σbϵb,t+1, (73)

At = A1−ρAAρA
t−1exp(σAεA,t), (74)

sg,t = s1−ρg
g s

ρg
g,t−1exp(σgεg,t), (75)

mt = exp(εm,tσm). (76)

4.3 Solution method

Standard perturbation methods provide local solutions and cannot handle models

with occasionally binding constraint without adaptation. For this reason, Fernandez-
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Villaverde et al. solve the model using a fully non-linear solution. In this paper,

the model is solved by the piecewise linear solution method presented in Guerrieri

and Iacoviello 2013. The routine codes are directly provided by the authors. Here

the solution technique is shortly presented. For a more detailed exposition, see the

original paper.

The piecewise solution method delivers a first order perturbation solution in a

piecewise fashion. The presence of the occasionally binding constraint creates two

regimes: in one the constraint is slack, in the other it is binding. In the current exer-

cise, the unconstrained case is the reference regime, the constrained (ZLB binding)

is the alternative. The solution that we obtain is not just the juxtaposition of two

linear solutions: the policy coefficients depend on how long the regime is expected

to last. How long the model lasts is influenced by the state vector. This feedback

effect can produce an important non-linearity. The piecewise linear solution allows

to obtain a large number of simulations and tackle the curse of dimensionality gen-

erated by dealing with solving non-linearly medium-scale economic models. 3

To solve the model two conditions must hold:

• Blanchard-Khan conditions must hold in the reference regime;

• If the shocks hitting the economy take the model away from the reference

regime to the alternative regime, in absence of future shocks the model must

return to the reference regime.

For further details on the solution method see Guerrieri and Iacoviello (2014).

4.4 Estimation strategy

The model is estimated using six quarterly macroeconomic time series for the

US economy, taken from FRED dataset and used as observable variables: the log

difference of Real GDP per person, the log difference of Real Consumption, log hours

worked, the log GDP deflator, the log difference of real wage, the log FED funds

rate. The observable equations are the following:

log∆GDPt = 100(yt − yt−1) + γ, (77)

log∆CONSt = 100(ct − ct−1) + γ, (78)

log∆WAGESt = 100(wt − wt−1) + γ, (79)

3A drawback of this solution method is that it assumes that agents do not expect future shocks
hitting the economy in the following periods. Hence precautionary savings are not considered.
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logHOURSt = 100lt + l̄, (80)

log∆DEFLt = 100 ∗ (pt ∗ π + π − 1), (81)

logFEDDUNDSt = 100(exp(rt) ∗RSS − 1)− 1. (82)

Where ∆ is the difference operator, RSS = π
β
. The type of dataset is very similar

to the one used by Smets and Wouters, except for the investment that is excluded.

As in Smets and Wouters, measurement errors are not necessary to estimate the

model, differently from the particle filter case.

The ZLB period started in 2008Q3 up to the end of the sample. Different estimation

exercises are performed. First, estimation is conducted according to four different

time ranges:

• Baseline: the sample size spans from 1966Q1 to 2014Q3. It is the largest

sample, it contains 185 observations and starts from the same quarter used in

the main estimation exercise in Smets and Wouters (2003);

• Great Moderation without the ZLB : the dataset range goes from 1983Q1 until

2007Q4. The sample contains 96 observations and stops before the interest

rate enters the Great Recession and hits the ZLB period;

• Great Moderation and the Great Recession: the sample spans from 1983 to

2014Q3 (125 observations). The economy is at the ZLB for approximately one

fifth of the time. The final part of the sample contains thh Great Recession

and the slow recovery.

• The Great Volatility II : the sample spans from 2001Q1 until 2014Q3 (57 ob-

servations). The economy is at the ZLB for approximately 40% of the sample.

In a first case, the estimation is performed using just the covariances and the vari-

ances of the observable variables. The moments are computed and matched condi-

tional on the two different regimes. In a second exercise, the estimation is performed

using covariances and non-guassian distributed moments:

• the frequency of being on the zero lower bound over the sample, the number

of periods at the ZLB;

• the frequency of being in recession over the sample, the number of periods at

of recession;

• the frequency of being in deflation over the sample, the number of periods at

of deflation.
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The priors used are common in literature and are listed in Table 8. ABC-SMC

procedure is applied, until convergence of the posterior distribution. The model

is simulated for 30000 times at the first iteration. In the first iteration, the 5%

of the simulations is accepted according to the Euclidean distance. After the first

iteration, each swarm of particle contains 1500 simulations and the particles are

perturbed according to the kernel K(θ∗∗i,t |θ∗i,t):

θ∗∗i,t ∼ N(θ∗i,t−1, c ∗ Σ), (83)

where Σ is a diagonal matrix with the variances of the first iteration accepted pa-

rameters, scaled by a scalar c = 0.02, to tune the acceptance rate in the following

iterations.

When t = 1, weights are assigned according to:

Wi,1 =
π(θi,1)

µ1(θi,1)
= 1 (84)

since the prior distribution π(θ) and the proposal µ1(θi,1) coincide.

When t ≥ 2 weights are assigned according to:

Wi,t =
π(θi,t)∑N

j=1Wt−1(θt−1,j)Kt(θt,i|θt−1,j)
, (85)

where Wi,t is the weight of particle i at iteration t. Kt(θt,i|θt−1,j) is the kernel of the

perturbation step. Particles of parameters are resampled when the effective sample

size is smaller than 750 (half of the accepted sample obtained after first accept-

reject).

The tolerance level is decreased of 0.1% at each iteration.

The convergence for the approximate posterior distribution can be intuitively checked

confronting the different approximate posterior distribution obtained at each itera-

tion. In this case, ten iterations are enough to insure convergence of the posterior

distributions (Fig. 9).

4.5 Estimation results.

Results for the four different samples are reported in Tables 9-12. Estimate

results are standard. Across the different sub-samples, standard deviations are larger

for the GM+ZLB and the GV-II periods and smaller for the GM period. Moreover,

autocorrelations for the preference AR(1) process and the TFP AR(1) process are
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larger for GM+ZLB and the GV-II periods. Autocorrelation for the government

spending process is larger for the baseline and the GM period. Concerning the

monetary policy, no significant differences emerge, except for the autocorrelation of

the interest rate, which is smaller in the GM period compared to the other sub-

samples estimates. To check how these estimates affect the dynamics of the model,

for each subsample estimate the model is shocked for two consecutive periods by two

preference shocks in a row. The magnitude of each shock is equal to two standard

deviations of the shock. Such shocks send the model onto the Zero lower bound in all

the examples, except for the Great Moderation period. As expected, the latter case

is the one where variables move more moderately (Fig.10). The largest variations

are found in the GV II case. These results suggest that even if the sub-samples

differ only for small fractions of data, the estimation results provided evidence for

different behaviour of the main variables.

If the non-gaussian moments are included estimates do not vary much compared

to the case with only gaussian moments. This is probably attributed to the fact

that the amount of new information introduced with the non gaussian moments

is relatively small compared to the one provided by the moments already in use.

Moreover, these moments seem to concern more the parameters affecting the steady

state value of inflation and interest rates (the inflation target Π and the subjective

discount factor β). As a result, the impulse responses look very similar (Fig.11).

The GM period is the one with the smallest reactions to the shock. With respect to

the case with only gaussian moments, except for the steady state values for interest

rate and inflation which are lower. From this simple exercise, the non gaussian

moments used (duration of ZLB, frequency of the ZLB, duration of deflation and so

forth) appear to be useful to improve the efficiency in the identification of steady

state parameters. A further investigation is required on this topic.

5 Conclusion

In this paper, Approximate Bayesian Computation techniques have been ap-

plied to the estimation of economic models. Two Montecarlo experiments have

been assessed to analyse the small samples properties of ABC techniques. ABC

performance is compared to the one of the Bayesian Limited Information Method

(BLI), Kim (2002). BLI can be interpreted as a Bayesian version of GMM-style

estimators.

ABC outperforms BLI both using an AR(1) at different persistence and an RBC

model with large persistence. The performance is analysed through the lens of
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Bayesian criteria:

• The RMSE with respect to the Full likelihood posterior mean;

• The Overlapping ratio between the approximate posteriors and the full likeli-

hood posterior distribution.

This result holds stronger when dealing with small sample and large persistence data

generating processes: ABC does not automatically rely on the normality assumption

made on the moments. ABC explores the whole moments distribution. Other esti-

mation exercises are provided. ABC-rejection and ABC-regression are applied to a

vanilla RBC model. A newkeynesian model with occasionally binding constraint is

applied. The model is solved and simulated using the piecewise linear approximation

by Guerrieri and Iacoviello 2013. ABC-SMC is applied to tackle the curse of dimen-

sionality. The model is estimated with different sub-samples. Results show different

behaviours of the main variables according to the sub-sample estimates used to get

the dynamics of the model. Great Moderation impulse responses strongly differ

from the ones obtained using estimates which take into account the Great Recession

and the ZLB period. Estimation is performed also using non-gaussian moments, as

the frequency of hitting the zero lower bound or the number of ZLB episodes. In

this case, inference is affected by using these unconventional features of the data,

contributing to increase the efficiency in the identification of some parameters.
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Table 1: Prior distribution for the RBC parameters

Parameter Distribution 1 2
β Beta 0.95 0.02
γ Normal 2 0.50
ρa Beta 0.95 0.04
ρb Beta 0.95 0.04
ρd Beta 0.95 0.04
σa Gamma Inverse 0.01 4
σb Gamma Inverse 0.01 4
σd Gamma Inverse 0.01 4

Prior distribution: Informative Prior

34



Table 2: RMSE, sample size=100 obs.

Methods β γ ρa ρb ρd σa σb σd
ABC-rej 0.01395 0.04079 0.01812 0.01566 0.01609 0.27268 0.22648 0.12772
ABC-ker 0.01456 0.04394 0.01871 0.01596 0.01666 0.27522 0.22939 0.13000
ABC-OLS 0.01406 0.06961 0.02131 0.02157 0.02014 0.27040 0.26608 0.16532
ABC-regr 0.01415 0.07220 0.02195 0.02180 0.02079 0.27223 0.26811 0.16567
ABC-HC 0.01920 0.10839 0.02755 0.03006 0.02448 0.26240 0.28406 0.22597
BLI 0.03729 0.05116 0.04154 0.03172 0.02695 0.67502 0.87365 0.30317

RMSE obtained in a Montecarlo experiment, 100 repetitions. The sample contains
100 observations. Case: High peristency and Informative Priors. ABC-rej= ABC-
rejection, ABC-ker=ABC-rejection + kernel weighting, ABC-OLS= ABC + OLS
Regression Step; ABC-regr= ABC-regression with Local Linear Regression, ABC-
HC=ABC-regression + Correction for Heteroskedasticity

Table 3: RMSE, sample size=200 obs.

Methods β γ ρa ρb ρd σa σb σd
ABC-rej 0.01231 0.05162 0.01738 0.01691 0.01543 0.25187 0.22934 0.10386
ABC-ker 0.01332 0.05151 0.01798 0.01763 0.01606 0.25104 0.23001 0.10843
ABC-OLS 0.01237 0.06588 0.02006 0.02174 0.02197 0.24180 0.26175 0.13565
ABC-regr 0.01269 0.06876 0.01998 0.02186 0.02150 0.24271 0.26266 0.14553
ABC-HC 0.01655 0.09258 0.02385 0.02764 0.02650 0.22664 0.26542 0.20675
BLI 0.03418 0.10956 0.04294 0.05040 0.02682 0.58462 0.72849 0.59571

RMSE obtained in a Montecarlo experiment, 100 repetitions. The sample contains
200 observations. Case: High peristency and Informative Priors. ABC-rej= ABC-
rejection, ABC-ker=ABC-rejection + kernel weighting, ABC-OLS= ABC + OLS
Regression Step; ABC-regr= ABC-regression with Local Linear Regression, ABC-
HC=ABC-regression + Correction for Heteroskedasticity

Table 4: RMSE, sample size=500 obs.

Methods β γ ρa ρb ρd σa σb σd
ABC-rej 0.01093 0.05065 0.02034 0.01764 0.01665 0.22934 0.27019 0.13820
ABC-ker 0.01110 0.05388 0.02042 0.01761 0.01669 0.22629 0.26472 0.14590
ABC-OLS 0.01081 0.08508 0.01765 0.01776 0.02078 0.22260 0.28040 0.19021
ABC-regr 0.01068 0.08764 0.01759 0.01755 0.02098 0.22184 0.28060 0.19879
ABC+HC 0.01205 0.11679 0.01875 0.01930 0.02520 0.20846 0.27512 0.26526
BLI 0.03742 0.06969 0.03863 0.03228 0.04938 0.58462 0.93056 0.53128

RMSE obtained in a Montecarlo experiment, 100 repetitions. The sample contains
500 observations. Case: High peristency and Informative Priors. ABC-rej= ABC-
rejection, ABC-ker=ABC-rejection + kernel weighting, ABC-OLS= ABC + OLS
Regression Step; ABC-regr= ABC-regression with Local Linear Regression, ABC-
HC=ABC-regression + Correction for Heteroskedasticity
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Table 5: OR100, sample size=100 obs.

Methods β γ ρa ρb ρd σa σb σd
ABC-rej 0.60627 0.81372 0.75159 0.80626 0.70472 0.44003 0.50961 0.70015
ABC-ker 0.67059 0.87735 0.76656 0.80266 0.80791 0.49469 0.58173 0.76644
ABC-OLS 0.36064 0.81120 0.72085 0.72093 0.75838 0.28645 0.39473 0.75102
ABC-regr 0.35319 0.80143 0.72284 0.72073 0.75071 0.28332 0.38944 0.74532
ABC-HC 0.55281 0.73430 0.66426 0.63165 0.68748 0.40299 0.42275 0.71252
BLI 0.04772 0.88188 0.66390 0.33132 0.34849 0.05231 -0.03619 0.43781

Overlapping Ratio obtained in a Montecarlo experiment, 100 repetitions. The sam-
ple contains 100 observations. Case: High peristency and Informative Priors. ABC-
rej= ABC-rejection, ABC-ker=ABC-rejection + kernel weighting, ABC-OLS= ABC
+ OLS Regression Step; ABC-regr= ABC-regression with Local Linear Regression,
ABC-HC=ABC-regression + Correction for Heteroskedasticity

Table 6: OR200, sample size=200 obs.

Methods β γ ρa ρb ρd σa σb σd
ABC-rej 0.57967 0.79299 0.73966 0.79252 0.67809 0.42241 0.47965 0.69985
ABC-ker 0.65300 0.87342 0.77590 0.78717 0.79739 0.48200 0.54320 0.76554
ABC-OLS 0.29644 0.82433 0.69746 0.68340 0.72241 0.22776 0.34818 0.74757
ABC-regr 0.29253 0.81414 0.69455 0.67834 0.72318 0.22574 0.34598 0.74664
ABC-HC 0.51729 0.77607 0.68972 0.67147 0.69955 0.39251 0.40124 0.71773
BLI 0.31990 0.77961 0.66926 0.62000 0.19545 0.12139 0.26556 0.43072

Overlapping Ratio obtained in a Montecarlo experiment, 100 repetitions. The sam-
ple contains 200 observations. Case: High peristency and Informative Priors. ABC-
rej= ABC-rejection, ABC-ker=ABC-rejection + kernel weighting, ABC-OLS= ABC
+ OLS Regression Step; ABC-regr= ABC-regression with Local Linear Regression,
ABC-HC=ABC-regression + Correction for Heteroskedasticity

Table 7: OR500, sample size=500 obs.

Methods β γ ρa ρb ρd σa σb σd
ABC-rej 0.50557 0.79718 0.68900 0.76053 0.64924 0.36181 0.44401 0.64670
ABC-ker 0.55337 0.86392 0.73684 0.76653 0.75746 0.40674 0.49992 0.73275
ABC-OLS 0.20349 0.79516 0.56611 0.58313 0.66112 0.13250 0.31733 0.69377
ABC-regr 0.20260 0.78619 0.56501 0.58256 0.65981 0.13104 0.31516 0.68630
ABC-HC 0.47321 0.76688 0.70070 0.74279 0.63753 0.34438 0.44529 0.67628
BLI 0.05993 0.83720 0.70892 0.31765 0.68671 0.11578 -0.04109 0.59651

Overlapping Ratio obtained in a Montecarlo experiment, 100 repetitions. The sam-
ple contains 500 observations. Case: High peristency and Informative Priors. ABC-
rej= ABC-rejection, ABC-ker=ABC-rejection + kernel weighting, ABC-OLS= ABC
+ OLS Regression Step; ABC-regr= ABC-regression with Local Linear Regression,
ABC-HC=ABC-regression + Correction for Heteroskedasticity
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Par Prior Distr Prior Mean Prior St.Dev.
β Beta 0.997 0.001
θ Beta 0.7 0.1
ϕy Gamma 0.2 0.1
ϕπ Gamma 2.2 1
ρR Beta 0.7 0.2
ϵ Gamma 6 1
ϕ Gamma 1 2
π Uniform 1.002 1.007
l̄ Normal 0 0.5
γ Normal 0 0.5
ρA Beta 0.70 0.20
ρG Beta 0.70 0.20
ρU Beta 0.80 0.10
σA InvGamma 0.005 4
σG InvGamma 0.005 4
σM InvGamma 0.005 4
σU InvGamma 0.005 4

Table 8: Prior distribution for the estimation of the newkeynesian model with the
occasionally binding ZLB

Parameter 5%CI Mean 95%CI
β 0.99591 0.996279 0.99671
θ 0.71878 0.764166 0.804385
ϕy 11 0.116811 0.158159 0.214062
ϕπ 1.45885 1.85648 2.28268
ρR 0.643356 0.74771 0.836872
ϵ 6.74608 7.07615 7.45351
ϕ 0.15195 0.402306 0.759111
π 1.00207 1.00243 1.00295
ρA 0.602841 0.692637 0.775175
ρG 0.688226 0.735817 0.765022
ρU 0.825232 0.909938 0.978777
σA 0.00401074 0.0058359 0.00846274
σG 0.00394885 0.00479752 0.00609127
σM 0.00325742 0.00443026 0.00595078
σU 0.00401563 0.00548303 0.00745046
l̄ 0.0300085 0.144853 0.344083
γ 0.00592662 0.115779 0.312684

Table 9: Estimates for the Baseline sample (1966Q1-2014Q3), using only gaussian
moments, ABC-SMC 10th iteration posterior mean and 5% and 95% credible interval
values.
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Parameter 5%CI Mean 95%CI
β 0.99483 0.99520 0.99583
θ 0.66356 0.70538 0.73836
ϕy 0.10252 0.15220 0.19152
ϕπ 1.49748 1.82866 2.25048
ρr 0.45842 0.51579 0.61003
ϵ 5.11345 5.56714 6.00983
ϕ 0.19322 0.59177 1.33045
π 1.00595 1.00621 1.00667
ρA 0.72697 0.82690 0.91660
ρG 0.67377 0.71112 0.76632
ρU 0.73527 0.83825 0.94086
σA 0.00325 0.00453 0.00576
σG 0.00337 0.00379 0.00423
σM 0.00338 0.00425 0.00494
σU 0.00352 0.00483 0.00623
l 0.00330 0.12036 0.29326
γ 0.00866 0.24216 0.53122

Table 10: Estimates for the Great Moderation sub-sample (1983Q1-2008Q3), using
only gaussian moments, ABC-SMC 10th iteration posterior mean and 5% and 95%
credible interval values.

Parameter 5%CI Mean 95%CI
β 0.9967 0.9971 0.9974
θ 0.7403 0.7719 0.7973
ϕy 0.1385 0.1715 0.2073
ϕπ 1.5818 1.817 2.2302
ρr 0.6532 0.7498 0.8106
ϵ 5.6922 5.9553 6.2826
ϕ 0.1547 0.5162 0.9885
π 1.0030 1.0035 1.0040
ρA 0.8421 0.9438 0.9923
ρG 0.7334 0.7806 0.8140
ρU 0.4984 0.5965 0.6743
σA 0.0030 0.0044 0.00634
σG 0.0038 0.0044 0.00508
σM 0.0039 0.00508 0.0067
σU 0.0031 0.0044 0.0055
l 0.0443 0.1680 0.3280
γ 0.1508 0.3175 0.5380

Table 11: Estimates for the Great Moderation +ZLB sub-sample (1983Q1-2014Q3),
using only gaussian moments, ABC-SMC 10th iteration posterior mean and 5% and
95% credible interval values.
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Parameter 5%CI Mean 95%CI
β 0.99512 0.9953 0.99583
θ 0.69172 0.73243 0.8051
ϕy 0.11763 0.14271 0.1891
ϕπ 1.28688 1.9525 2.5373
ρr 0.64005 0.7029 0.8352
ϵ 5.43814 5.8696 6.0763
ϕ 0.10567 0.3181 0.8044
π 1.0039 1.0046 1.00536;
ρA 0.77037 0.8747 0.9265
ρG ;0.70265 0.7492 0.8218
ρU 0.41432 0.50462 0.5395
σA 0.0037 0.0053 0.0073
σG 0.0046 0.0062 0.0070
σM 0.0035 0.0046 0.0056
σU 0.0043 0.00504 0.0068
l 0.0740 0.3899 0.5464
γ 0.01824 0.10519 0.40064

Table 12: Estimates for the Great Volatility II sub-sample (2001Q1-2014Q3), using
only gaussian moments, ABC-SMC 10th iteration posterior mean and 5% and 95%
credible interval values.

Parameter 5%CI Mean 95%CI
β 0.99624 0.996852 0.997151
θ 0.706703 0.746625 0.791787
ϕy 0.114461 0.191332 0.264339
ϕπ 1.49242 1.97145 2.36059
ρR 0.555455 0.6427 0.69883
ϵ 5.56305 5.88184 6.15413
ϕ 0.101903 0.353194 0.821647
π 1.00467 1.00515 1.00584
ρA 0.672021 0.748399 0.791278
ρG 0.719414 0.759741 0.789415
ρU 0.519773 0.59543 0.648594
σA 0.00337889 0.00437111 0.00567692
σG 0.00437548 0.00484554 0.00545708
σM 0.00336325 0.0043778 0.00548099
σU 0.0038067 0.0049121 0.00665101
l 0.0439899 0.202102 0.405959
γ 0.0383722 0.194152 0.348914

Table 13: Estimates for the Baseline sample (1966Q1-2014Q3), using gaussian and
non-gaussian moments, ABC-SMC 10th iteration posterior mean and 5% and 95%
credible interval values.
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Parameter 5%CI Mean 95%CI
β 0.99569 0.9962 0.9967
θ 0.7462 0.7864 0.8190
ϕy 0.17864 0.2308 0.2727
ϕπ 2.2062 2.5943 2.90280
ρr 0.3969 0.4664 0.5124
ϵ 6.2492 6.6182 7.1278
ϕ 0.5348 1.6724 3.07298
π 1.0062 1.0064 1.00679
ρA 0.7309 0.8182 0.9135
ρG 0.7257 0.7617 0.8020
ρU 0.5355 0.6251 0.71412
σA ;0.0039 0.0048 0.00587
σG 0.0034 0.0038 0.00441
σM 0.00314 0.0036 0.00428
σU 0.00404 0.0052 0.00680
l 0.5625 0.7337 0.9362
γ 0.0226 0.1072 0.2849

Table 14: Estimates for the Great Moderation sub-sample (1983Q1-2008Q3), using
gaussian and non-gaussian moments, ABC-SMC 10th iteration posterior mean and
5% and 95% credible interval values.

Parameter 5%CI Mean 95%CI
β 0.995834 0.996229 0.996659
θ 0.763125 0.794579 0.84167
ϕy 0.123546 0.178209 0.232961
ϕπ 1.79105 2.20896 2.62851
ρr 0.606357 0.694911 0.790621
ϵ 5.07277 5.3655 5.68538
ϕ 0.152892 0.355819 0.806334
π 1.00274 1.00314 1.00371
ρA 0.678949 0.796617 0.861448
ρG 0.738915 0.761976 0.803161
ρU 0.728303 0.84731 0.919905
σA 0.00349434 0.00444531 0.00644926
σG 0.00387025 0.00477542 0.00580725
σM 0.00317167 0.00445699 0.00583731
σU 0.00435183 0.00615152 0.00815232
l 0.0148726 0.204401 0.416093
γ 0.00826553 0.176484 0.317272

Table 15: Estimates for the Great Moderation +ZLB sub-sample (1983Q1-2014Q3),
using gaussian and non gaussian moments, ABC-SMC 10th iteration posterior mean
and 5% and 95% credible interval values.
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Parameter 5%CI Mean 95%CI
β 0.9963 0.9968 0.9972
θ 0.6779 0.7133 0.7623
ϕy 0.1258 0.1706 0.2181
ϕπ 1.3898 1.6264 2.0326
ρr 0.6158 0.7225 0.8099
ϵ 5.7602 6.1574 6.4772
ϕ 0.0867 0.2295 0.7533
π 1.0023 1.0028 1.0036
ρA 0.5577 0.6525 0.8684
ρG 0.7107 0.7650 0.7931
ρU 0.8613 0.9393 0.9914
σA 0.0042 0.0060 0.0076
σG 0.00280 0.0035 0.005
σM 0.0037 0.0046 0.0056
σU 0.0037 0.0048 0.0060
l 0.0139 0.1085 0.3500
γ 0.0292 0.1361 0.3746

Table 16: Estimates Great Volatility II sub-sample (2001Q1-2014Q3), using gaussian
and non gaussian moments, ABC-SMC 10th iteration posterior mean and 5% and
95% credible interval values.
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Figure 1: Distribution of the sample autocovariance for an AR(1) process with
ϕ = 0.50 for different sample sizes: from 50 to 2000 observations. The pink plane
represents the population autocovariance.

Figure 2: Distribution of the sample autocovariance for an AR(1) process with
ϕ = 0.99 for different sample sizes: from 50 to 4000 observations. The pink plane
represents the population autocovariance.
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Figure 3: RMSE of the Montecarlo experiment: AR(1) process. Comparison among
the ABC, HAC-BLI, Bootstrapping-BLI estimators, sample size=100. Different
autocorrelations on the horizontal axis.

Figure 4: RMSE of the Montecarlo experiment: AR(1) process. Comparison among
the ABC, HAC-BLI, Bootstrapping-BLI estimators, sample size=300. Different
autocorrelations on the horizontal axis.

43



Figure 5: RMSE of the Montecarlo experiment: AR(1) process. Comparison among
the ABC, HAC-BLI, Bootstrapping-BLI estimators, sample size=1000. Different
autocorrelations on the horizontal axis.
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Figure 6: Overlapping Ratios of the Montecarlo experiment: AR(1) process.
Comparison among the ABC, HAC-BLI, Bootstrapping-BLI estimators, sample
size=100. Different autocorrelations on the horizontal axis.

Figure 7: Overlapping Ratios of the Montecarlo experiment: AR(1) process.
Comparison among the ABC, HAC-BLI, Bootstrapping-BLI estimators, sample
size=300. Different autocorrelations on the horizontal axis.
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Figure 8: Overlapping Ratios of the Montecarlo experiment: AR(1) process.
Comparison among the ABC, HAC-BLI, Bootstrapping-BLI estimators, sample
size=1000. Different autocorrelations on the horizontal axis.
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Figure 9: Approximate posterior distributions obtained for the first 10 iterations of
the ABC-SMC for the parameter ρU in an estimation exercise (Estimation of the
subsample Great Moderation + ZLB, using gaussian moments.
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Figure 10: 2-standard deviation Impulse responses of preference shock for 4 differ-
ent sub-samples: Baseline (SW), Great Moderation (GM), Great Moderation+Zero
Lower Bound (GM+ZLB), Great Volatility-II (GV). ABC-SMC is performed us-
ing only gaussian moments. Priors and 10-th iteration approximate posteriors are
reported.
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Figure 11: 2-standard deviation Impulse responses of preference shock for 4 differ-
ent sub-samples: Baseline (SW), Great Moderation (GM), Great Moderation+Zero
Lower Bound (GM+ZLB), Great Volatility-II (GV). ABC-SMC is performed us-
ing gaussian and non-gaussian moments. Priors and 10-th iteration approximate
posteriors are reported.
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Figure 12: Prior and posterior distributions for the newkeynesian model for 4 differ-
ent sub-samples: Baseline (SW), Great Moderation (GM), Great Moderation+Zero
Lower Bound (GM+ZLB), Great Volatility-II (GV). ABC-SMC is performed us-
ing only gaussian moments. Priors and 10-th iteration approximate posteriors are
reported
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Figure 13: Prior and posterior distributions for the newkeynesian model for 4 differ-
ent sub-samples: Baseline (SW), Great Moderation (GM), Great Moderation+Zero
Lower Bound (GM+ZLB), Great Volatility-II (GV). ABC-SMC is performed us-
ing only gaussian moments. Priors and 10-th iteration approximate posteriors are
reported
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Figure 14: Prior and posterior distributions for the newkeynesian model for 4 differ-
ent sub-samples: Baseline (SW), Great Moderation (GM), Great Moderation+Zero
Lower Bound (GM+ZLB), Great Volatility-II (GV). ABC-SMC is performed us-
ing only gaussian moments. Priors and 10-th iteration approximate posteriors are
reported
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Figure 15: Prior and posterior distributions for the newkeynesian model for 4 differ-
ent sub-samples: Baseline (SW), Great Moderation (GM), Great Moderation+Zero
Lower Bound (GM+ZLB), Great Volatility-II (GV). ABC-SMC is performed us-
ing gaussian and non-gaussian moments. Priors and 10-th iteration approximate
posteriors are reported
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Figure 16: Prior and posterior distributions for the newkeynesian model for 4 differ-
ent sub-samples: Baseline (SW), Great Moderation (GM), Great Moderation+Zero
Lower Bound (GM+ZLB), Great Volatility-II (GV). ABC-SMC is performed us-
ing gaussian and non-gaussian moments. Priors and 10-th iteration approximate
posteriors are reported
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Figure 17: Prior and posterior distributions for the newkeynesian model with for
4 different sub-samples: Baseline (SW), Great Moderation (GM), Great Modera-
tion+Zero Lower Bound (GM+ZLB), Great Volatility-II (GV). ABC-SMC is per-
formed using gaussian and non-gaussian moments. Priors and 10-th iteration ap-
proximate posteriors are reported
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